Guillermo Valenzuela-Venegas, Maria Luisa Lode, Isabelle Viole, Alex Felice, Ander Martinez Alonso, Luis Ramirez Camargo, Sabrina Sartori, Marianne Zeyringer
{"title":"A renewable and socially accepted energy system for astronomical telescopes","authors":"Guillermo Valenzuela-Venegas, Maria Luisa Lode, Isabelle Viole, Alex Felice, Ander Martinez Alonso, Luis Ramirez Camargo, Sabrina Sartori, Marianne Zeyringer","doi":"10.1038/s41893-024-01442-3","DOIUrl":null,"url":null,"abstract":"Remote astronomical telescopes without access to the national electricity grid are usually designed to rely on fossil fuels without considering the social and energy needs of the surrounding communities. Concurrently, climate change concerns and fuel price vulnerability are driving the transition to renewable energy sources. Here we propose a socially accepted renewable energy system for a future telescope in the Atacama Desert, combining an energy system model with a participatory multi-criteria analysis. Our findings highlight the fact that various stakeholders, including local residents, the municipality, the existing local utility and observatories, prioritize emissions reduction, security of supply and reduced electricity costs. The results reveal that a system supplying renewable energy to the telescope could also cover 66% of a nearby community’s energy needs without additional capacity. Stakeholder inputs show that this is the most attractive solution by developing an energy system in which all the actors benefit. Replicating similar energy systems at nearby telescopes could reduce fossil fuel-based energy generation by 30 GWh annually, cutting emissions by 18–24 ktCO2e while contributing to energy justice. The proposed approach aims to promote social acceptance of renewable energy systems by involving stakeholders in the decision-making process, integrating benefit sharing among them and contributing to the region’s emissions reduction efforts. Telescopes around the world are usually built in remote areas to maximize observational effectiveness, usually relying on fossil fuel-based energy generators for their operations. This Article analyses community involvement in designing an energy system for a telescope in the Atacama Desert that is both environmentally sustainable and inclusive.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1642-1650"},"PeriodicalIF":25.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01442-3","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Remote astronomical telescopes without access to the national electricity grid are usually designed to rely on fossil fuels without considering the social and energy needs of the surrounding communities. Concurrently, climate change concerns and fuel price vulnerability are driving the transition to renewable energy sources. Here we propose a socially accepted renewable energy system for a future telescope in the Atacama Desert, combining an energy system model with a participatory multi-criteria analysis. Our findings highlight the fact that various stakeholders, including local residents, the municipality, the existing local utility and observatories, prioritize emissions reduction, security of supply and reduced electricity costs. The results reveal that a system supplying renewable energy to the telescope could also cover 66% of a nearby community’s energy needs without additional capacity. Stakeholder inputs show that this is the most attractive solution by developing an energy system in which all the actors benefit. Replicating similar energy systems at nearby telescopes could reduce fossil fuel-based energy generation by 30 GWh annually, cutting emissions by 18–24 ktCO2e while contributing to energy justice. The proposed approach aims to promote social acceptance of renewable energy systems by involving stakeholders in the decision-making process, integrating benefit sharing among them and contributing to the region’s emissions reduction efforts. Telescopes around the world are usually built in remote areas to maximize observational effectiveness, usually relying on fossil fuel-based energy generators for their operations. This Article analyses community involvement in designing an energy system for a telescope in the Atacama Desert that is both environmentally sustainable and inclusive.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.