{"title":"Three-dimensional bonding anisotropy of bulk hexagonal metal titanium demonstrated by high harmonic generation","authors":"Ikufumi Katayama, Kento Uchida, Kimika Takashina, Akari Kishioka, Misa Kaiho, Satoshi Kusaba, Ryo Tamaki, Ken-ichi Shudo, Masahiro Kitajima, Thien Duc Ngo, Tadaaki Nagao, Jun Takeda, Koichiro Tanaka, Tetsuya Matsunaga","doi":"10.1038/s42005-024-01906-0","DOIUrl":null,"url":null,"abstract":"High harmonic generation (HHG) in solid-state materials is an emerging field of photonics research that can unveil the detailed electronic structure of materials, bond strengths and scattering processes of electrons. Although HHG in semiconducting and insulating materials has been intensively investigated both experimentally and theoretically, metals have rarely been explored because the strong screening effect of high-density free electrons is considered to significantly weaken the HHG signal. Here, we investigated HHG upon infrared excitation in bulk hexagonal metal titanium (Ti), a typical building block for practical lightweight structural materials. By analyzing the polarization dependence, the approach revealed the three-dimensional (3D) anisotropy in the electronic states. The results demonstrated the potential of HHG spectroscopy for characterizing 3D bonding anisotropy in metallic systems that are of fundamental importance for designing lightweight and strong structural materials. High harmonics generation (HHG) is a promising way of investigating electronic structures and anisotropy in materials. The authors demonstrate the observation of HHG in simple structural material, hexagonal metal titanium, and experimentally clarified the anisotropy in the electronic states from the polarization dependence.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01906-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01906-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High harmonic generation (HHG) in solid-state materials is an emerging field of photonics research that can unveil the detailed electronic structure of materials, bond strengths and scattering processes of electrons. Although HHG in semiconducting and insulating materials has been intensively investigated both experimentally and theoretically, metals have rarely been explored because the strong screening effect of high-density free electrons is considered to significantly weaken the HHG signal. Here, we investigated HHG upon infrared excitation in bulk hexagonal metal titanium (Ti), a typical building block for practical lightweight structural materials. By analyzing the polarization dependence, the approach revealed the three-dimensional (3D) anisotropy in the electronic states. The results demonstrated the potential of HHG spectroscopy for characterizing 3D bonding anisotropy in metallic systems that are of fundamental importance for designing lightweight and strong structural materials. High harmonics generation (HHG) is a promising way of investigating electronic structures and anisotropy in materials. The authors demonstrate the observation of HHG in simple structural material, hexagonal metal titanium, and experimentally clarified the anisotropy in the electronic states from the polarization dependence.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.