Temporal-spatial manipulation of bi-focal bi-chromatic fields for terahertz radiations

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-19 DOI:10.1038/s42005-024-01893-2
Jingjing Zhao, Yizhu Zhang, Yanjun Gao, Meng Li, Xiaokun Liu, Weimin Liu, Tian-Min Yan, Yuhai Jiang
{"title":"Temporal-spatial manipulation of bi-focal bi-chromatic fields for terahertz radiations","authors":"Jingjing Zhao, Yizhu Zhang, Yanjun Gao, Meng Li, Xiaokun Liu, Weimin Liu, Tian-Min Yan, Yuhai Jiang","doi":"10.1038/s42005-024-01893-2","DOIUrl":null,"url":null,"abstract":"Mixing the fundamental (ω) and the second harmonic (2ω) waves in the gas phase is a widely employed technique for emitting terahertz (THz) pulses. The THz generation driven by bi-chromatic fields can be described by the photocurrent model, where the THz generation is attributed to free electrons ionized by the ω field, and the 2ω field provides a perturbation to break the symmetry of the asymptotic momentum of free electrons. However, we find that the THz radiation is amplified by one order of magnitude when driven by bi-focal bi-chromatic fields, which cannot be explained only using the photocurrent model. Meanwhile, present measurements demonstrate that the THz radiation mainly originates from the plasma created by the 2ω pulses instead of the ω pulses. Energy transfer from the 2ω beam to the THz beam during the THz generation has been observed, validating the major contribution of the 2ω beam. Furthermore, the THz bandwidth has been observed to extensively exceed the bandwidth of the pump pulse, not be explained by the photocurrent model as well. These counterintuitive results present a significant challenge for understanding strong-field nonlinear optics and simultaneously expanding various applications. Mixing the fundamental (ω) and the second harmonic (2ω) waves in the gas phase is a widely used technique for generating terahertz pulses. The authors experimentally present an enhanced terahertz emission through the temporal-spatial manipulation of bi-focal bi-chromatic fields, and the THz radiation mainly originates from the plasma created by the 2ω pulses instead of the ω pulses, which cannot be explained only using photocurrent model.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01893-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01893-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mixing the fundamental (ω) and the second harmonic (2ω) waves in the gas phase is a widely employed technique for emitting terahertz (THz) pulses. The THz generation driven by bi-chromatic fields can be described by the photocurrent model, where the THz generation is attributed to free electrons ionized by the ω field, and the 2ω field provides a perturbation to break the symmetry of the asymptotic momentum of free electrons. However, we find that the THz radiation is amplified by one order of magnitude when driven by bi-focal bi-chromatic fields, which cannot be explained only using the photocurrent model. Meanwhile, present measurements demonstrate that the THz radiation mainly originates from the plasma created by the 2ω pulses instead of the ω pulses. Energy transfer from the 2ω beam to the THz beam during the THz generation has been observed, validating the major contribution of the 2ω beam. Furthermore, the THz bandwidth has been observed to extensively exceed the bandwidth of the pump pulse, not be explained by the photocurrent model as well. These counterintuitive results present a significant challenge for understanding strong-field nonlinear optics and simultaneously expanding various applications. Mixing the fundamental (ω) and the second harmonic (2ω) waves in the gas phase is a widely used technique for generating terahertz pulses. The authors experimentally present an enhanced terahertz emission through the temporal-spatial manipulation of bi-focal bi-chromatic fields, and the THz radiation mainly originates from the plasma created by the 2ω pulses instead of the ω pulses, which cannot be explained only using photocurrent model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating DarkSide-20k sensitivity to light dark matter particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1