Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-12-19 DOI:10.1038/s41698-024-00765-w
Sushant Patkar, Alex Chen, Alina Basnet, Amber Bixby, Rahul Rajendran, Rachel Chernet, Susan Faso, Prashant A. Kumar, Devashish Desai, Ola El-Zammar, Christopher Curtiss, Saverio J. Carello, Michel R. Nasr, Peter Choyke, Stephanie Harmon, Baris Turkbey, Tamara Jamaspishvili
{"title":"Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images","authors":"Sushant Patkar, Alex Chen, Alina Basnet, Amber Bixby, Rahul Rajendran, Rachel Chernet, Susan Faso, Prashant A. Kumar, Devashish Desai, Ola El-Zammar, Christopher Curtiss, Saverio J. Carello, Michel R. Nasr, Peter Choyke, Stephanie Harmon, Baris Turkbey, Tamara Jamaspishvili","doi":"10.1038/s41698-024-00765-w","DOIUrl":null,"url":null,"abstract":"Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the tumor microenvironment (TME) composition directly from histopathology images of NSCLC patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-specific molecular signatures directly from whole slide images, achieving an average Pearson correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find that HistoTME-predicted microenvironment signatures and their underlying interactions improve prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 0.75 [95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective approach for interrogating the TME and predicting ICI response, complementing PD-L1 expression, and bringing us closer to personalized immuno-oncology.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-15"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00765-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00765-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the tumor microenvironment (TME) composition directly from histopathology images of NSCLC patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-specific molecular signatures directly from whole slide images, achieving an average Pearson correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find that HistoTME-predicted microenvironment signatures and their underlying interactions improve prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 0.75 [95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective approach for interrogating the TME and predicting ICI response, complementing PD-L1 expression, and bringing us closer to personalized immuno-oncology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数字组织病理学图像预测非小细胞肺癌的肿瘤微环境组成和免疫治疗反应
免疫检查点抑制剂(ICI)已成为治疗非小细胞肺癌(NSCLC)不可或缺的一部分。然而,预测免疫治疗疗效的可靠生物标志物是有限的。在这里,我们介绍了一种新的弱监督深度学习方法HistoTME,它可以直接从非小细胞肺癌患者的组织病理图像中推断肿瘤微环境(TME)的组成。我们发现,HistoTME直接从整个幻灯片图像中准确地预测了30种不同细胞类型特异性分子特征的表达,在独立的肿瘤队列中,Pearson的平均相关性为0.5。此外,我们发现,利用652名患者的外部临床队列,histotme预测的微环境特征及其潜在的相互作用改善了接受免疫治疗的肺癌患者的预后,预测一线ICI治疗后治疗反应的AUROC为0.75 [95% CI: 0.61-0.88]。总的来说,HistoTME提供了一种有效的方法来询问TME和预测ICI反应,补充PD-L1表达,并使我们更接近个性化免疫肿瘤学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1