Screening of ESR2-targeted anti-postmenopausal osteoporosis chemistry from Rehmanniae Radix Preparata based on affinity ultrafiltration with UPLC-QE-Orbitrap-MS.

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Chromatography B Pub Date : 2024-12-12 DOI:10.1016/j.jchromb.2024.124419
Shuo Wang, Yawen Li, Nanxi Zhang, Peitong Wu, Xueqin Feng, Xiaochen Gao, Jiaming Shen, Wanjie Liu, Wei Feng, Jiaming Sun
{"title":"Screening of ESR2-targeted anti-postmenopausal osteoporosis chemistry from Rehmanniae Radix Preparata based on affinity ultrafiltration with UPLC-QE-Orbitrap-MS.","authors":"Shuo Wang, Yawen Li, Nanxi Zhang, Peitong Wu, Xueqin Feng, Xiaochen Gao, Jiaming Shen, Wanjie Liu, Wei Feng, Jiaming Sun","doi":"10.1016/j.jchromb.2024.124419","DOIUrl":null,"url":null,"abstract":"<p><p>Rehmanniae Radix Preparata, a processed form of the traditional Chinese medicinal plant Rehmannia glutinosa Libosch, has long been valued for its medicinal properties and use as a food. It is notably effective in treating postmenopausal osteoporosis. This study utilized C18 to separate and purify different concentrations of its eluent streams. MC3T3-E1 cells were utilized to identify the optimal ESR2 activity fraction from various concentrations of Rehmanniae Radix Preparata, using osteoprotegerin (OPG) as an indicator. A single-target affinity ultrafiltration method was created, combining ESR2 affinity ultrafiltration with liquid chromatography-mass spectrometry (LC-MS). Molecular docking validated the interaction mechanism between small molecule ligands and ESR2 protein. These ligands were then tested in MC3T3-E1 cells to assess survival rate, OPG content, and alkaline phosphatase (ALP) activity, an osteogenic differentiation marker. The study showed that Radix Rehmanniae Praeparata effectively combats PMOP, and the combined method of single-target-affinity ultrafiltration-LC-MS with molecular docking offers a robust approach for identifying its anti-PMOP compounds.</p>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1251 ","pages":"124419"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2024.124419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rehmanniae Radix Preparata, a processed form of the traditional Chinese medicinal plant Rehmannia glutinosa Libosch, has long been valued for its medicinal properties and use as a food. It is notably effective in treating postmenopausal osteoporosis. This study utilized C18 to separate and purify different concentrations of its eluent streams. MC3T3-E1 cells were utilized to identify the optimal ESR2 activity fraction from various concentrations of Rehmanniae Radix Preparata, using osteoprotegerin (OPG) as an indicator. A single-target affinity ultrafiltration method was created, combining ESR2 affinity ultrafiltration with liquid chromatography-mass spectrometry (LC-MS). Molecular docking validated the interaction mechanism between small molecule ligands and ESR2 protein. These ligands were then tested in MC3T3-E1 cells to assess survival rate, OPG content, and alkaline phosphatase (ALP) activity, an osteogenic differentiation marker. The study showed that Radix Rehmanniae Praeparata effectively combats PMOP, and the combined method of single-target-affinity ultrafiltration-LC-MS with molecular docking offers a robust approach for identifying its anti-PMOP compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chromatography B
Journal of Chromatography B 医学-分析化学
CiteScore
5.60
自引率
3.30%
发文量
306
审稿时长
44 days
期刊介绍: The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis. Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches. Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.
期刊最新文献
Corrigendum to "Pharmacokinetic and tissue distribution study of pectolinarigenin in rats using UPLC-MS/MS" [J. Chromatogr. B 1247 (2024) 124344]. Exploring the potential anti-COPD ingredients and mechanisms of the Qingfei decoction based on UHPLC-HRMS, network pharmacology and transcriptomic analysis. Development and validation of a quantification method for direct oral anticoagulants from capillary blood using volumetric absorptive microsampling and online SPE-LC-MS. Screening of ESR2-targeted anti-postmenopausal osteoporosis chemistry from Rehmanniae Radix Preparata based on affinity ultrafiltration with UPLC-QE-Orbitrap-MS. Effect of furmonertinib on the pharmacokinetics of rivaroxaban or apixaban in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1