C-Type Lectin S Group TcCTL4 Participates in the Immunity of Tribolium castaneum

IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of Insect Biochemistry and Physiology Pub Date : 2024-12-17 DOI:10.1002/arch.70012
Yonglei Zhang, Huayi Ai, Ping Zhang, Bin Li
{"title":"C-Type Lectin S Group TcCTL4 Participates in the Immunity of Tribolium castaneum","authors":"Yonglei Zhang,&nbsp;Huayi Ai,&nbsp;Ping Zhang,&nbsp;Bin Li","doi":"10.1002/arch.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>C-type lectin S (CTL-S) plays a crucial role in pathogen recognition and the activation of immune response. In comparison, the proportion of CTL-S was relatively high in insects, but the study was much smaller than the proportion observed. In this study, we cloned and characterized one CTL-S, <i>TcCTL4</i>, from <i>Tribolium castaneum</i>. Our analysis revealed that <i>TcCTL4</i> was highly expressed during the early pupal stage, with expression levels exhibiting a tendency to change with developmental stages. Additionally, tissue expression analysis showed a high expression of <i>TcCTL4</i> in the central nervous system (CNS). Moreover, we observed a significant increase in <i>TcCTL4</i> transcripts after bacterial challenge. The RNA interference (RNAi) of <i>TcCTL4</i> before bacterial treatment resulted in a significant reduction in the transcripts of immune factors (IFs) and antimicrobial peptides (AMPs), indicating that <i>TcCTL4</i> may regulate AMP expression through the activation of the immune signaling pathway. Furthermore, our investigation revealed that the recombinant protein TcCTL4 (rTcCTL4) not only recognized bacteria but also agglutinated bacteria in a Ca<sup>2+</sup>-dependent manner. Enzyme activity analysis suggested that rTcCTL4 could enhance phenoloxidase activity, implying its potential involvement in the prophenoloxidase activation pathway. In conclusion, these results indicate that <i>TcCTL4</i> is involved in the immunity of <i>T. castaneum</i>, providing valuable insights into insect CTLs.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"117 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

C-type lectin S (CTL-S) plays a crucial role in pathogen recognition and the activation of immune response. In comparison, the proportion of CTL-S was relatively high in insects, but the study was much smaller than the proportion observed. In this study, we cloned and characterized one CTL-S, TcCTL4, from Tribolium castaneum. Our analysis revealed that TcCTL4 was highly expressed during the early pupal stage, with expression levels exhibiting a tendency to change with developmental stages. Additionally, tissue expression analysis showed a high expression of TcCTL4 in the central nervous system (CNS). Moreover, we observed a significant increase in TcCTL4 transcripts after bacterial challenge. The RNA interference (RNAi) of TcCTL4 before bacterial treatment resulted in a significant reduction in the transcripts of immune factors (IFs) and antimicrobial peptides (AMPs), indicating that TcCTL4 may regulate AMP expression through the activation of the immune signaling pathway. Furthermore, our investigation revealed that the recombinant protein TcCTL4 (rTcCTL4) not only recognized bacteria but also agglutinated bacteria in a Ca2+-dependent manner. Enzyme activity analysis suggested that rTcCTL4 could enhance phenoloxidase activity, implying its potential involvement in the prophenoloxidase activation pathway. In conclusion, these results indicate that TcCTL4 is involved in the immunity of T. castaneum, providing valuable insights into insect CTLs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C-Type Lectin S Group TcCTL4 参与了蓖麻毛虫的免疫。
c型凝集素S (CTL-S)在病原体识别和免疫应答激活中起着至关重要的作用。相比之下,CTL-S在昆虫中的比例相对较高,但研究的比例远小于观察到的比例。在本研究中,我们克隆并鉴定了一种来自蓖麻的CTL-S, TcCTL4。我们的分析表明,TcCTL4在蛹期早期高表达,表达水平随发育阶段的变化而变化。此外,组织表达分析显示TcCTL4在中枢神经系统(CNS)中高表达。此外,我们观察到细菌攻击后TcCTL4转录物显著增加。细菌处理前对TcCTL4进行RNA干扰(RNAi),导致免疫因子(IFs)和抗菌肽(AMP)转录物显著减少,表明TcCTL4可能通过激活免疫信号通路调节AMP表达。此外,我们的研究表明,重组蛋白TcCTL4 (rTcCTL4)不仅识别细菌,而且还以Ca2+依赖的方式凝集细菌。酶活性分析表明,rTcCTL4可增强酚氧化酶活性,可能参与了酚氧化酶原活化途径。综上所述,这些结果表明TcCTL4参与了castaneum的免疫,为昆虫ctl的研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
115
审稿时长
12 months
期刊介绍: Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.
期刊最新文献
Evaluating the Potential Immunostimulatory Effects of Cryptomeria japonica Leaf Essential Oil on Honey Bees (Apis mellifera) Detecting Brown Planthopper, Nilaparvata lugens (Stål) Damage in Rice Using Hyperspectral Remote Sensing Genetic Control of Social Experience-Dependent Changes in Locomotor Activity in Drosophila melanogaster Males Microcystin-Lr-Induced Changes in Growth Performance, Intestinal Microbiota, and Lipid Metabolism of Black Soldier Fly Larvae (Hermetia illucens) Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1