Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties.

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Beilstein Journal of Nanotechnology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.126
Agnieszka Kreitschitz, Stanislav N Gorb
{"title":"Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties.","authors":"Agnieszka Kreitschitz, Stanislav N Gorb","doi":"10.3762/bjnano.15.126","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope. Mucilage serves several important biological functions, such as supporting seed germination, protecting seeds against pathogens and predators, and allowing the seed to attach to diverse surfaces (e.g., soil or animals). The attachment properties of mucilage are thus responsible for seed dispersal. Mucilage represents a hydrophilic, three-dimensional network of polysaccharides (cellulose, pectins, and hemicelluloses) and is able to absorb large amounts of water. Depending on the water content, mucilage can behave as an efficient lubricant or as strong glue. The current work attempts to summarise the achievements in the research on the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1603-1618"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.126","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope. Mucilage serves several important biological functions, such as supporting seed germination, protecting seeds against pathogens and predators, and allowing the seed to attach to diverse surfaces (e.g., soil or animals). The attachment properties of mucilage are thus responsible for seed dispersal. Mucilage represents a hydrophilic, three-dimensional network of polysaccharides (cellulose, pectins, and hemicelluloses) and is able to absorb large amounts of water. Depending on the water content, mucilage can behave as an efficient lubricant or as strong glue. The current work attempts to summarise the achievements in the research on the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入种子粘液包膜的天然纳米纤维:具有特殊粘附性和摩擦性的复合水凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
期刊最新文献
Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties. Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility. Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol. Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti. Ultrablack color in velvet ant cuticle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1