Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Adhesion & Migration Pub Date : 2025-12-01 Epub Date: 2024-12-18 DOI:10.1080/19336918.2024.2442349
Zeyu Wang, Taiyuan Liu, Kang He, Longyun Wang, Xiaoxuan Ma, Zhaoyun Yang, Yingchao Zhang, Lijing Zhao
{"title":"Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells.","authors":"Zeyu Wang, Taiyuan Liu, Kang He, Longyun Wang, Xiaoxuan Ma, Zhaoyun Yang, Yingchao Zhang, Lijing Zhao","doi":"10.1080/19336918.2024.2442349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Research on the function of HGH1 in breast cancer remains lacking.</p><p><strong>Methods: </strong>TCGAand GEO (GSE45827) datasets investigated discrepancies in HGH1 expression in BC. An aggregate of 106 clinical samples were gathered through immunohistochemistry, KM curves were drawn for prognostic analysis, and the function of HGH1 of BC was predicted. Finally, the effects of HGH1 knockdown on MDA-MB-231 and MCF-7 BC cells were verified via CCK8, invasion, wound healing and colony formation assays.</p><p><strong>Results: </strong>HGH1 is highly expressed in BC and is linked to unfavorable prognosis. HGH1 overexpression is connected to keratinization and the cell cycle and is closely related to ER and PR expression and tumor stage in BC patients. Knocking down HGH1 in BC cells inhibited the viability, invasion and migration.</p><p><strong>Conclusion: </strong>Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"19 1","pages":"1-14"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2024.2442349","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Research on the function of HGH1 in breast cancer remains lacking.

Methods: TCGAand GEO (GSE45827) datasets investigated discrepancies in HGH1 expression in BC. An aggregate of 106 clinical samples were gathered through immunohistochemistry, KM curves were drawn for prognostic analysis, and the function of HGH1 of BC was predicted. Finally, the effects of HGH1 knockdown on MDA-MB-231 and MCF-7 BC cells were verified via CCK8, invasion, wound healing and colony formation assays.

Results: HGH1 is highly expressed in BC and is linked to unfavorable prognosis. HGH1 overexpression is connected to keratinization and the cell cycle and is closely related to ER and PR expression and tumor stage in BC patients. Knocking down HGH1 in BC cells inhibited the viability, invasion and migration.

Conclusion: Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
期刊最新文献
Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Copine C plays a role in adhesion and streaming in Dictyostelium. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1