A Novel circ_0075829/miR-326/GOT1 ceRNA Crosstalk Regulates the Malignant Phenotypes and Drug Sensitivity of Gemcitabine-Resistant Pancreatic Cancer Cells
Yongjia Xiang, Rubing Zhou, Yi Yang, Hao Bai, Fan Liang, Hongmei Wang, Xia Wang
{"title":"A Novel circ_0075829/miR-326/GOT1 ceRNA Crosstalk Regulates the Malignant Phenotypes and Drug Sensitivity of Gemcitabine-Resistant Pancreatic Cancer Cells","authors":"Yongjia Xiang, Rubing Zhou, Yi Yang, Hao Bai, Fan Liang, Hongmei Wang, Xia Wang","doi":"10.1002/jbt.70089","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown. To generate GEM-resistant PC cells (BxPC-3/GR and SW1990/GR), we exposed GEM-sensitive PC cells to GEM. Circ_0075829, microRNA (miR)-326, and glutamic-oxaloacetic transaminase 1 (GOT1) were quantified by a qRT-PCR or western blot method. Cell survival and viability were gauged by MTS assay. Cell proliferation, apoptosis, invasion, and migration were assessed by EdU, flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter assays were used to verify the relationship between miR-326 and circ_0075829 or GOT1. Mouse xenografts were performed to evaluate the role of circ_0075829 in vivo. Our data showed that circ_0075829 was upregulated in GEM-resistant PC tissues and cells. Knockdown of circ_0075829 impeded the proliferation, invasion, migration, and glutamine metabolism, and promoted cell apoptosis and GEM sensitivity of GEM-resistant PC cells. Moreover, circ_0075829 silencing suppressed the tumorigenicity of SW1990/GR cells and sensitized them to the cytotoxic effect of GME in vivo. Mechanistically, circ_0075829 bound miR-326 and exerted regulatory effects by affecting miR-326 expression. GOT1 was a direct miR-326 target and a key downstream effector of miR-326. Furthermore, circ_0075829 modulated GOT1 expression via miR-326. Our findings establish a novel regulatory network, the circ_0075829/miR-326/GOT1 competing endogenous RNA (ceRNA) crosstalk, in the regulation of GEM resistance in PC.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown. To generate GEM-resistant PC cells (BxPC-3/GR and SW1990/GR), we exposed GEM-sensitive PC cells to GEM. Circ_0075829, microRNA (miR)-326, and glutamic-oxaloacetic transaminase 1 (GOT1) were quantified by a qRT-PCR or western blot method. Cell survival and viability were gauged by MTS assay. Cell proliferation, apoptosis, invasion, and migration were assessed by EdU, flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter assays were used to verify the relationship between miR-326 and circ_0075829 or GOT1. Mouse xenografts were performed to evaluate the role of circ_0075829 in vivo. Our data showed that circ_0075829 was upregulated in GEM-resistant PC tissues and cells. Knockdown of circ_0075829 impeded the proliferation, invasion, migration, and glutamine metabolism, and promoted cell apoptosis and GEM sensitivity of GEM-resistant PC cells. Moreover, circ_0075829 silencing suppressed the tumorigenicity of SW1990/GR cells and sensitized them to the cytotoxic effect of GME in vivo. Mechanistically, circ_0075829 bound miR-326 and exerted regulatory effects by affecting miR-326 expression. GOT1 was a direct miR-326 target and a key downstream effector of miR-326. Furthermore, circ_0075829 modulated GOT1 expression via miR-326. Our findings establish a novel regulatory network, the circ_0075829/miR-326/GOT1 competing endogenous RNA (ceRNA) crosstalk, in the regulation of GEM resistance in PC.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.