Stability of volatile organic compounds in thermal desorption tubes and in solution.

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of breath research Pub Date : 2025-01-13 DOI:10.1088/1752-7163/ada05c
Kristian J Kiland, Lucas Martins, Scott A Borden, Stephen Lam, Renelle Myers
{"title":"Stability of volatile organic compounds in thermal desorption tubes and in solution.","authors":"Kristian J Kiland, Lucas Martins, Scott A Borden, Stephen Lam, Renelle Myers","doi":"10.1088/1752-7163/ada05c","DOIUrl":null,"url":null,"abstract":"<p><p>Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards. We evaluated the stability of a standard mixture of 42 VOCs in dual-sorbent tubes containing Tenax® TA and Carbotrap 1TD over 60 d at commonly used storage conditions: room temperature (∼21 °C), 4 °C, and -80 °C. The same 42 VOCs were also evaluated for their stability in methanol over 60 d while stored at -20 °C. All samples were analyzed using TD-GC-MS. During storage, most VOCs were stable on sorbent after 60 d: 36/42 (86%), 39/42 (93%), and 41/42 (98%) had not statistically changed for room temperature, 4 °C and -80 °C, respectively, based on Spearman rank correlation coefficients and linear regression analysis. The isotopically labeled VOCs tested here are well-suited to serve as internal standards for pre-analysis or storage. Degradation of VOCs in solution was apparent after 60 d: 27/42 (64%) of VOCs had statistically decreased. The total VOC mixture had dropped to 90% of its original intensity after ∼22 d and a subset of VOCs typically used as internal standards dropped to 90% in ∼16 d. Analysts using similar mixtures should make a fresh solution at least every two weeks to ensure analytical accuracy. This study provides important insights into storage practices for both sorbent tubes and standard solutions, guiding analysts toward improved reliability and accuracy in exhaled breath analysis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ada05c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards. We evaluated the stability of a standard mixture of 42 VOCs in dual-sorbent tubes containing Tenax® TA and Carbotrap 1TD over 60 d at commonly used storage conditions: room temperature (∼21 °C), 4 °C, and -80 °C. The same 42 VOCs were also evaluated for their stability in methanol over 60 d while stored at -20 °C. All samples were analyzed using TD-GC-MS. During storage, most VOCs were stable on sorbent after 60 d: 36/42 (86%), 39/42 (93%), and 41/42 (98%) had not statistically changed for room temperature, 4 °C and -80 °C, respectively, based on Spearman rank correlation coefficients and linear regression analysis. The isotopically labeled VOCs tested here are well-suited to serve as internal standards for pre-analysis or storage. Degradation of VOCs in solution was apparent after 60 d: 27/42 (64%) of VOCs had statistically decreased. The total VOC mixture had dropped to 90% of its original intensity after ∼22 d and a subset of VOCs typically used as internal standards dropped to 90% in ∼16 d. Analysts using similar mixtures should make a fresh solution at least every two weeks to ensure analytical accuracy. This study provides important insights into storage practices for both sorbent tubes and standard solutions, guiding analysts toward improved reliability and accuracy in exhaled breath analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挥发性有机化合物在热解吸管和溶液中的稳定性。
在热解吸-气相色谱-质谱(TD-GC-MS)分析之前,通常将呼出的VOCs收集并储存在吸附管中。储存过程中挥发性有机化合物的稳定性信息对于潜在的人工产物和监测损失是必要的。此外,作为质量控制和内部标准,需要有关溶液中VOC标准稳定性的信息来评估其性能。我们在含有Tenax®TA和Carbotrap 1TD的双吸附管中评估了42种VOCs的标准混合物在常用储存条件下的稳定性:室温(~21°C), 4°C和-80°C。同样的42种挥发性有机化合物也被评估了在-20°C下储存在甲醇中超过60天的稳定性。所有样品均采用TD-GC-MS进行分析。根据Spearman秩相关系数和线性回归分析,在室温、4℃和-80℃条件下,大多数挥发性有机化合物在吸附剂上贮存60 d后保持稳定,分别为36/42(86%)、39/42(93%)和41/42(98%)无统计学变化。这里测试的同位素标记的挥发性有机化合物是用作预分析或储存的内部标准的良好候选者。60天后,溶液中挥发性有机化合物(VOCs)降解明显:27/42(64%)的挥发性有机化合物有统计学意义上的下降。22天后,总挥发性有机化合物浓度降至初始浓度的90%,16天后,通常用作内部标准的一部分挥发性有机化合物浓度降至90%。使用类似混合物的分析人员应至少每两周配制一次新溶液,以确保分析准确性。这项研究为吸收管和标准溶液的存储实践提供了重要的见解,指导分析人员提高呼气分析的可靠性和准确性。& # xD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
期刊最新文献
Bibliometrics and altmetrics on halitosis: exploring the top 100 most-cited papers. Alveolar nitric oxide concentration as a potential biomarker of fibrosis and active disease in pulmonary sarcoidosis: a pilot study. Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics. Stability of volatile organic compounds in thermal desorption tubes and in solution. Xylometazoline-induced change in aspirated nasal nitric oxide detects obstructed paranasal ostia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1