Kristian J Kiland, Lucas Martins, Scott A Borden, Stephen Lam, Renelle Myers
{"title":"Stability of volatile organic compounds in thermal desorption tubes and in solution.","authors":"Kristian J Kiland, Lucas Martins, Scott A Borden, Stephen Lam, Renelle Myers","doi":"10.1088/1752-7163/ada05c","DOIUrl":null,"url":null,"abstract":"<p><p>Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards. We evaluated the stability of a standard mixture of 42 VOCs in dual-sorbent tubes containing Tenax® TA and Carbotrap 1TD over 60 d at commonly used storage conditions: room temperature (∼21 °C), 4 °C, and -80 °C. The same 42 VOCs were also evaluated for their stability in methanol over 60 d while stored at -20 °C. All samples were analyzed using TD-GC-MS. During storage, most VOCs were stable on sorbent after 60 d: 36/42 (86%), 39/42 (93%), and 41/42 (98%) had not statistically changed for room temperature, 4 °C and -80 °C, respectively, based on Spearman rank correlation coefficients and linear regression analysis. The isotopically labeled VOCs tested here are well-suited to serve as internal standards for pre-analysis or storage. Degradation of VOCs in solution was apparent after 60 d: 27/42 (64%) of VOCs had statistically decreased. The total VOC mixture had dropped to 90% of its original intensity after ∼22 d and a subset of VOCs typically used as internal standards dropped to 90% in ∼16 d. Analysts using similar mixtures should make a fresh solution at least every two weeks to ensure analytical accuracy. This study provides important insights into storage practices for both sorbent tubes and standard solutions, guiding analysts toward improved reliability and accuracy in exhaled breath analysis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ada05c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards. We evaluated the stability of a standard mixture of 42 VOCs in dual-sorbent tubes containing Tenax® TA and Carbotrap 1TD over 60 d at commonly used storage conditions: room temperature (∼21 °C), 4 °C, and -80 °C. The same 42 VOCs were also evaluated for their stability in methanol over 60 d while stored at -20 °C. All samples were analyzed using TD-GC-MS. During storage, most VOCs were stable on sorbent after 60 d: 36/42 (86%), 39/42 (93%), and 41/42 (98%) had not statistically changed for room temperature, 4 °C and -80 °C, respectively, based on Spearman rank correlation coefficients and linear regression analysis. The isotopically labeled VOCs tested here are well-suited to serve as internal standards for pre-analysis or storage. Degradation of VOCs in solution was apparent after 60 d: 27/42 (64%) of VOCs had statistically decreased. The total VOC mixture had dropped to 90% of its original intensity after ∼22 d and a subset of VOCs typically used as internal standards dropped to 90% in ∼16 d. Analysts using similar mixtures should make a fresh solution at least every two weeks to ensure analytical accuracy. This study provides important insights into storage practices for both sorbent tubes and standard solutions, guiding analysts toward improved reliability and accuracy in exhaled breath analysis.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.