Thermodynamic Langevin equations.

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-11-01 DOI:10.1103/PhysRevE.110.054136
Amilcare Porporato, Salvatore Calabrese, Lamberto Rondoni
{"title":"Thermodynamic Langevin equations.","authors":"Amilcare Porporato, Salvatore Calabrese, Lamberto Rondoni","doi":"10.1103/PhysRevE.110.054136","DOIUrl":null,"url":null,"abstract":"<p><p>The physical significance of the stochastic processes associated to the generalized Gibbs ensembles is scrutinized here with special attention to the thermodynamic fluctuations of small systems. Differently from the so-called stochastic thermodynamics, which starts from stochastic versions of the first and second law of thermodynamics and associates thermodynamic quantities to microscopic variables, here we consider stochastic variability directly in the macroscopic variables. By recognizing the potential structure of the Gibbs ensembles, when expressed as a function of the potential entropy generation, we obtain exact nonlinear thermodynamic Langevin equations (TLEs) for macroscopic variables, with drift expressed in terms of entropic forces. The analysis of the canonical ensemble for an ideal monoatomic gas and the related TLEs show that introducing currents leads to nonequilibrium heat transfer conditions with interesting bounds on entropy production but with no obvious thermodynamic limit. For a colloidal particle under constant force, the TLEs for macroscopic variables are different from those for the microscopic position, typically used in stochastic thermodynamics; while TLEs are consistent with the fundamental equation obtained from the Hamiltonian, stochastic thermodynamics requires isothermal conditions and entropy proportional to position.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054136"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054136","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The physical significance of the stochastic processes associated to the generalized Gibbs ensembles is scrutinized here with special attention to the thermodynamic fluctuations of small systems. Differently from the so-called stochastic thermodynamics, which starts from stochastic versions of the first and second law of thermodynamics and associates thermodynamic quantities to microscopic variables, here we consider stochastic variability directly in the macroscopic variables. By recognizing the potential structure of the Gibbs ensembles, when expressed as a function of the potential entropy generation, we obtain exact nonlinear thermodynamic Langevin equations (TLEs) for macroscopic variables, with drift expressed in terms of entropic forces. The analysis of the canonical ensemble for an ideal monoatomic gas and the related TLEs show that introducing currents leads to nonequilibrium heat transfer conditions with interesting bounds on entropy production but with no obvious thermodynamic limit. For a colloidal particle under constant force, the TLEs for macroscopic variables are different from those for the microscopic position, typically used in stochastic thermodynamics; while TLEs are consistent with the fundamental equation obtained from the Hamiltonian, stochastic thermodynamics requires isothermal conditions and entropy proportional to position.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热力学朗格万方程。
在这里,我们仔细研究了与广义吉布斯集合相关的随机过程的物理意义,并特别关注小系统的热力学波动。所谓的随机热力学是从热力学第一和第二定律的随机版本出发,将热力学量与微观变量联系在一起,与此不同,我们在这里直接考虑宏观变量中的随机变异性。通过认识吉布斯集合的势能结构(用势能熵生成函数表示),我们得到了宏观变量的精确非线性热力学朗格文方程(TLEs),其漂移用熵力表示。对理想单原子气体的典型集合和相关 TLEs 的分析表明,引入电流会导致非平衡传热条件,对熵的产生有有趣的限制,但没有明显的热力学极限。对于恒力作用下的胶体粒子,宏观变量的 TLE 与随机热力学通常使用的微观位置变量的 TLE 不同;TLE 与从哈密顿方程得到的基本方程一致,而随机热力学要求等温条件和熵与位置成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states. Ergodicity breaking and restoration in models of heat transport with microscopic reversibility. Random search for a partially reactive target by multiple diffusive searchers. Random walk with horizontal and cyclic currents. Noise-induced transitions from contractile to extensile active stress in isotropic fluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1