Mechanochemical topological defects in an active nematic.

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-11-01 DOI:10.1103/PhysRevE.110.054605
Michael M Norton, Piyush Grover
{"title":"Mechanochemical topological defects in an active nematic.","authors":"Michael M Norton, Piyush Grover","doi":"10.1103/PhysRevE.110.054605","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054605"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们提出了一种反应扩散系统,可将活性向列的拓扑信息转化为化学信号。我们的研究表明,曲率激活的反应偶极子足以创建一个系统,通过产生具有与 ±1/2 缺陷重合的局部极值的浓度场来动态感知拓扑结构。该使能项类似于电介质材料中的极化电荷密度。我们展示了该系统识别被动和主动线粒体缺陷的能力。我们的结果表明,用偏微分方程系统表示的相对简单的反馈方案能够产生化学信号,以响应各向异性介质中固有的非局部结构。我们认为,这种粗粒度系统有助于为形态发生等生物系统中的调节过程提出可检验的假设,并激励人们利用向列结构与生物化学之间的动态耦合创造生物启发材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Discrete element method model of soot aggregates. Dynamical phase transitions in the XY model: A Monte Carlo and mean-field-theory study. Dynamical system model of gentrification: Exploring a simple rent control strategy. Dynamical localization in nonideal kicked rotors driven by two competing pulsatile modulations. Solution of the space-fractional diffusion equation on bounded domains of superdiffusive phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1