3DCryoHolder: a new open access 3D printable system to store and transport silicon nitride membranes under cryogenic conditions for spectromicroscopy at low temperature.
{"title":"3DCryoHolder: a new open access 3D printable system to store and transport silicon nitride membranes under cryogenic conditions for spectromicroscopy at low temperature.","authors":"Antonio Dominguez-Alfaro, Carlos Sanchez-Cano","doi":"10.1107/S1600577524010919","DOIUrl":null,"url":null,"abstract":"<p><p>Data acquisition under cryogenic conditions allows one to avoid unwanted damage caused by beam irradiation. This is particularly important for the study of biological samples at hard X-ray, micro- or nano-probe beamlines, which focus synchrotron radiation to small beam sizes with extremely high flux densities. Sample preparation methods for cryopreserved specimens have been adapted from electron microscopy, and include the use of silicon nitride membranes as they are easy to handle and possess low X-ray absorption. Yet, currently there are no commercially available methods for the storage and transport of silicon nitride membranes under cryogenic conditions. Here, we introduce and provide the design files of 3DCryoHolder, a system that can be 3D printed in-house for the correct storage and transport of multiple silicon nitride membranes under cryogenic conditions, and is compatible with all commercial plunge-freezing instruments.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"225-229"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524010919","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data acquisition under cryogenic conditions allows one to avoid unwanted damage caused by beam irradiation. This is particularly important for the study of biological samples at hard X-ray, micro- or nano-probe beamlines, which focus synchrotron radiation to small beam sizes with extremely high flux densities. Sample preparation methods for cryopreserved specimens have been adapted from electron microscopy, and include the use of silicon nitride membranes as they are easy to handle and possess low X-ray absorption. Yet, currently there are no commercially available methods for the storage and transport of silicon nitride membranes under cryogenic conditions. Here, we introduce and provide the design files of 3DCryoHolder, a system that can be 3D printed in-house for the correct storage and transport of multiple silicon nitride membranes under cryogenic conditions, and is compatible with all commercial plunge-freezing instruments.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.