3DCryoHolder: a new open access 3D printable system to store and transport silicon nitride membranes under cryogenic conditions for spectromicroscopy at low temperature.

IF 2.5 3区 物理与天体物理 Journal of Synchrotron Radiation Pub Date : 2025-01-01 DOI:10.1107/S1600577524010919
Antonio Dominguez-Alfaro, Carlos Sanchez-Cano
{"title":"3DCryoHolder: a new open access 3D printable system to store and transport silicon nitride membranes under cryogenic conditions for spectromicroscopy at low temperature.","authors":"Antonio Dominguez-Alfaro, Carlos Sanchez-Cano","doi":"10.1107/S1600577524010919","DOIUrl":null,"url":null,"abstract":"<p><p>Data acquisition under cryogenic conditions allows one to avoid unwanted damage caused by beam irradiation. This is particularly important for the study of biological samples at hard X-ray, micro- or nano-probe beamlines, which focus synchrotron radiation to small beam sizes with extremely high flux densities. Sample preparation methods for cryopreserved specimens have been adapted from electron microscopy, and include the use of silicon nitride membranes as they are easy to handle and possess low X-ray absorption. Yet, currently there are no commercially available methods for the storage and transport of silicon nitride membranes under cryogenic conditions. Here, we introduce and provide the design files of 3DCryoHolder, a system that can be 3D printed in-house for the correct storage and transport of multiple silicon nitride membranes under cryogenic conditions, and is compatible with all commercial plunge-freezing instruments.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"225-229"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524010919","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data acquisition under cryogenic conditions allows one to avoid unwanted damage caused by beam irradiation. This is particularly important for the study of biological samples at hard X-ray, micro- or nano-probe beamlines, which focus synchrotron radiation to small beam sizes with extremely high flux densities. Sample preparation methods for cryopreserved specimens have been adapted from electron microscopy, and include the use of silicon nitride membranes as they are easy to handle and possess low X-ray absorption. Yet, currently there are no commercially available methods for the storage and transport of silicon nitride membranes under cryogenic conditions. Here, we introduce and provide the design files of 3DCryoHolder, a system that can be 3D printed in-house for the correct storage and transport of multiple silicon nitride membranes under cryogenic conditions, and is compatible with all commercial plunge-freezing instruments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DCryoHolder:一种新的开放式三维打印系统,用于在低温条件下存储和传输氮化硅膜,以便在低温条件下进行光谱分析。
在低温条件下的数据采集允许人们避免光束照射造成的不必要的损害。这对于在硬x射线、微探针或纳米探针光束线上研究生物样品尤其重要,这些光束线将同步辐射聚焦到具有极高通量密度的小光束上。低温保存标本的样品制备方法已经适应了电子显微镜,包括使用氮化硅膜,因为它们易于处理并且具有低x射线吸收。然而,目前还没有商业上可用的方法在低温条件下储存和运输氮化硅膜。在这里,我们介绍并提供3DCryoHolder的设计文件,这是一个可以在内部3D打印的系统,用于在低温条件下正确存储和运输多个氮化硅膜,并与所有商用的跳水冷冻仪器兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Compensation for the source drift of a free-electron laser beamline by adjusting the fixed-focus constant of the grating monochromator. Long-term timing stabilization for pump-probe experiments at SACLA. Novel fixed-target serial crystallography flip-holder for macromolecular crystallography beamlines at synchrotron radiation sources. Probing soft X-ray induced photoreduction of a model Mn-complex at cryogenic conditions. ULtimate MAGnetic characterization (ULMAG) at the ID12 beamline of ESRF: from element-specific properties to macroscopic functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1