{"title":"Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population.","authors":"Jinlin Tong, Xu Han, Yuanyuan Li, Yuyao Wang, Meijie Liu, Hong Liu, Jinghua Pan, Lei Zhang, Ying Liu, Miao Jiang, Hongyan Zhao","doi":"10.1016/j.numecd.2024.103789","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Atherosclerosis is a life-threatening disease that develops when a plaque builds up inside an artery and progresses silently. Identifying the early pathological changes and the biomarkers of atherosclerosis deserves attention. We aimed to systematically study and integrate the various metabolites of atherosclerosis in the level of disease to provide more evidences to support early prevention and treatment of atherosclerosis.</p><p><strong>Data synthesis: </strong>The protocol was registered with PROPSERO (CRD42023441845). We searched 14,985 records via EMBASE, PubMed, Web of Science, WanFang data, VIP data, and CNKI databases. The collected metabolites were for qualitative and quantitative meta-analysis. The I<sup>2</sup> statistic estimated heterogeneity, with over 50 % considered to adopt the random-effects model. A total of 49 articles were included in the meta-analysis. We finally integrated 83 and 16 metabolites presented more than two times in inclusion studies, respectively in blood (plasma and serum) and urine. Among them, the level of citric acid (SMD = -10.35 [95%CI -15.03, -5.67], p < 0.001), lactic acid (SMD = 6.32 [95%CI 0.12, 12.52], p < 0.001) and TMAO (SMD = 1.40 [95%CI 0.27, 2.53], p < 0.001) had significant differences between atherosclerosis and controls. And we observed blood stasis syndrome of atherosclerosis patients present arterial ischemia and energy disorder obviously.</p><p><strong>Conclusions: </strong>The study provides an in-depth understanding of the roles of metabolites on atherosclerosis progression and prediction primarily in Chinese population, which contributing to development of prevention and therapeutic potential in the future.</p>","PeriodicalId":49722,"journal":{"name":"Nutrition Metabolism and Cardiovascular Diseases","volume":" ","pages":"103789"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Metabolism and Cardiovascular Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.numecd.2024.103789","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Atherosclerosis is a life-threatening disease that develops when a plaque builds up inside an artery and progresses silently. Identifying the early pathological changes and the biomarkers of atherosclerosis deserves attention. We aimed to systematically study and integrate the various metabolites of atherosclerosis in the level of disease to provide more evidences to support early prevention and treatment of atherosclerosis.
Data synthesis: The protocol was registered with PROPSERO (CRD42023441845). We searched 14,985 records via EMBASE, PubMed, Web of Science, WanFang data, VIP data, and CNKI databases. The collected metabolites were for qualitative and quantitative meta-analysis. The I2 statistic estimated heterogeneity, with over 50 % considered to adopt the random-effects model. A total of 49 articles were included in the meta-analysis. We finally integrated 83 and 16 metabolites presented more than two times in inclusion studies, respectively in blood (plasma and serum) and urine. Among them, the level of citric acid (SMD = -10.35 [95%CI -15.03, -5.67], p < 0.001), lactic acid (SMD = 6.32 [95%CI 0.12, 12.52], p < 0.001) and TMAO (SMD = 1.40 [95%CI 0.27, 2.53], p < 0.001) had significant differences between atherosclerosis and controls. And we observed blood stasis syndrome of atherosclerosis patients present arterial ischemia and energy disorder obviously.
Conclusions: The study provides an in-depth understanding of the roles of metabolites on atherosclerosis progression and prediction primarily in Chinese population, which contributing to development of prevention and therapeutic potential in the future.
期刊介绍:
Nutrition, Metabolism & Cardiovascular Diseases is a forum designed to focus on the powerful interplay between nutritional and metabolic alterations, and cardiovascular disorders. It aims to be a highly qualified tool to help refine strategies against the nutrition-related epidemics of metabolic and cardiovascular diseases. By presenting original clinical and experimental findings, it introduces readers and authors into a rapidly developing area of clinical and preventive medicine, including also vascular biology. Of particular concern are the origins, the mechanisms and the means to prevent and control diabetes, atherosclerosis, hypertension, and other nutrition-related diseases.