{"title":"Born to be wild: utilizing natural microbiota for reliable biomedical research.","authors":"Philipp Bruno, Thomas Schüler, Stephan P Rosshart","doi":"10.1016/j.it.2024.11.013","DOIUrl":null,"url":null,"abstract":"<p><p>Laboratory mice housed under specific pathogen-free (SPF) conditions are the standard model in biomedical research. However, experiments with a particular inbred mouse strain performed in different laboratories often yield inconsistent or conflicting data due to housing-specific variations in the composition and diversity of SPF microbiota. These variations affect immune and nonimmune cell functions, leading to systemic physiological changes. Consequently, microbiota-dependent inconsistencies have raised general doubts regarding the suitability of mice as model organisms. Since stability positively correlates with biological diversity, we postulate that increasing species diversity can improve microbiota stability and mouse physiology, enhancing robustness, reproducibility, and experimental validity. Similar to the generation of inbred mouse strains in the last century, we suggest a worldwide initiative to define a transplantable 'wild' microbiota that stably colonizes mice irrespective of housing conditions.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"17-28"},"PeriodicalIF":13.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.it.2024.11.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laboratory mice housed under specific pathogen-free (SPF) conditions are the standard model in biomedical research. However, experiments with a particular inbred mouse strain performed in different laboratories often yield inconsistent or conflicting data due to housing-specific variations in the composition and diversity of SPF microbiota. These variations affect immune and nonimmune cell functions, leading to systemic physiological changes. Consequently, microbiota-dependent inconsistencies have raised general doubts regarding the suitability of mice as model organisms. Since stability positively correlates with biological diversity, we postulate that increasing species diversity can improve microbiota stability and mouse physiology, enhancing robustness, reproducibility, and experimental validity. Similar to the generation of inbred mouse strains in the last century, we suggest a worldwide initiative to define a transplantable 'wild' microbiota that stably colonizes mice irrespective of housing conditions.
期刊介绍:
Trends in Immunology serves as a vital platform for tracking advancements across various areas of immunology, offering concise reviews and hypothesis-driven viewpoints in each issue. With additional sections providing comprehensive coverage, the journal offers a holistic view of immunology. This broad perspective makes it an invaluable resource for researchers, educators, and students, facilitating the connection between basic and clinical immunology. Recognized as one of the top monthly review journals in its field, Trends in Immunology is highly regarded by the scientific community.