Dual-site peroxidase-mimic graphdiyne-based colorimetric sensor arrays with machine learning for screening of multiple antibiotics

IF 3.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Sensors and Actuators B: Chemical Pub Date : 2024-12-19 DOI:10.1016/j.snb.2024.137158
Xingchen Qiu , Jianyu Yang , Rui Bai, Mengdi Zhao, Changfa Shao, Qingqing Zhao, Yu Gu, Chunxian Guo, Chang-Ming Li
{"title":"Dual-site peroxidase-mimic graphdiyne-based colorimetric sensor arrays with machine learning for screening of multiple antibiotics","authors":"Xingchen Qiu ,&nbsp;Jianyu Yang ,&nbsp;Rui Bai,&nbsp;Mengdi Zhao,&nbsp;Changfa Shao,&nbsp;Qingqing Zhao,&nbsp;Yu Gu,&nbsp;Chunxian Guo,&nbsp;Chang-Ming Li","doi":"10.1016/j.snb.2024.137158","DOIUrl":null,"url":null,"abstract":"<div><div>The abuse of antibiotics poses a significant threat to both human health and the ecosystem, while the rapid screening of multiple antibiotics remains a challenge. We report the design of a dual-site peroxidase (POD)-mimic nanozyme comprising self-assembled hemin molecules and Cu<sup>2 +</sup> on graphdiyne (GDY) for screening of multiple antibiotics assisted with machine learning (ML). Cu ions can bond with π bonds and carbonyl groups on the surface of GDY, thereby enabling strong interface of hemin and GDY for an enhanced generation of hydroxyl radicals (<sup><strong>.</strong></sup>OH). GDY/Hemin/Cu exhibits POD-like activity in wide pH conditions and temperatures ranging from 20 to 70 °C. With the assistance of ML, GDY/Hemin/Cu-based colorimetric sensor arrays demonstrate fast and accurate identification of multiple antibiotics including kanamycin, norfloxacin, ampicillin sodium, catechol and isoniazid. Theoretical calculation confirms that strong binding affinity enables specificity of the GDY/Hemin/Cu towards antibiotics. By employing support vector machine algorithm to assess antibiotic content, a high detection accuracy of 97.5 % is achieved across 40 honey samples, underscoring the potential practical applications in screening of multiple antibiotics.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"427 ","pages":"Article 137158"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524018884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The abuse of antibiotics poses a significant threat to both human health and the ecosystem, while the rapid screening of multiple antibiotics remains a challenge. We report the design of a dual-site peroxidase (POD)-mimic nanozyme comprising self-assembled hemin molecules and Cu2 + on graphdiyne (GDY) for screening of multiple antibiotics assisted with machine learning (ML). Cu ions can bond with π bonds and carbonyl groups on the surface of GDY, thereby enabling strong interface of hemin and GDY for an enhanced generation of hydroxyl radicals (.OH). GDY/Hemin/Cu exhibits POD-like activity in wide pH conditions and temperatures ranging from 20 to 70 °C. With the assistance of ML, GDY/Hemin/Cu-based colorimetric sensor arrays demonstrate fast and accurate identification of multiple antibiotics including kanamycin, norfloxacin, ampicillin sodium, catechol and isoniazid. Theoretical calculation confirms that strong binding affinity enables specificity of the GDY/Hemin/Cu towards antibiotics. By employing support vector machine algorithm to assess antibiotic content, a high detection accuracy of 97.5 % is achieved across 40 honey samples, underscoring the potential practical applications in screening of multiple antibiotics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双位点过氧化物酶模拟石墨烯的比色传感器阵列与机器学习筛选多种抗生素
抗生素的滥用对人类健康和生态系统构成重大威胁,而快速筛选多种抗生素仍然是一项挑战。我们报道了一种双位点过氧化物酶(POD)模拟纳米酶的设计,该纳米酶由石墨炔(GDY)上的自组装血红蛋白分子和Cu2+组成,用于辅助机器学习(ML)筛选多种抗生素。Cu离子可以与GDY表面的π键和羰基结合,从而使血红蛋白与GDY形成强界面,促进羟基自由基(. oh)的生成。GDY/Hemin/Cu在较宽的pH条件和20 ~ 70°C的温度范围内表现出类似pod的活性。在ML的辅助下,GDY/Hemin/ cu基比色传感器阵列能够快速准确地鉴定卡那霉素、诺氟沙星、氨苄西林钠、儿茶酚和异烟肼等多种抗生素。理论计算证实GDY/Hemin/Cu对抗生素具有较强的结合亲和力。采用支持向量机算法对40份蜂蜜样品进行抗生素含量评估,检测准确率高达97.5%,在多种抗生素的筛选中具有潜在的实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
期刊最新文献
Sensitive detection of CA125 based on TPE-ZIF-8/GO electrochemiluminescent material and catalytic hairpin signal amplification strategy All-Silk Fibroin Wearable SERS Sensors: Integrating Opal Arrays and Janus Electrospun Structures for Sweat Analysis of Urea and Lactate Metallic Catalyst Loaded 2D Perovskite Sheets for Heightened Surface Activity for Selective Chemiresistive Sensing Valence-engineered spinel oxide nanozymes with dual enzyme-like activities for intelligent biosensing applications Low-power NO2 Gas Alarm Platform Using In-memory Latched Comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1