{"title":"Observation of loss-enhanced magneto-optical effect","authors":"Ya-Ping Ruan, Jiang-Shan Tang, Zhipeng Li, Haodong Wu, Wenpeng Zhou, Longqi Xiao, Jianfeng Chen, Shi-Jun Ge, Wei Hu, Han Zhang, Cheng-Wei Qiu, Wuming Liu, Hui Jing, Yan-Qing Lu, Keyu Xia","doi":"10.1038/s41566-024-01592-y","DOIUrl":null,"url":null,"abstract":"<p>Magneto-optical (MO) effects have a pivotal role in modern photonic devices for light manipulation and sensing, but the study of these effects has so far been limited to the MO Faraday and Kerr effects. Conventional MO systems encounter considerable intrinsic losses, markedly hampering their ability to amplify the MO effects. Here we introduce a loss-enhanced MO effect to sublinearly amplify the frequency response of a non-Hermitian optical cavity under different background magnetic fields. This exceptional MO effect relies on an architecture of MO material embedded in a Fabry–Pérot cavity, accompanied by a polarization-dependent optical absorption, that is, linear dichroism, to construct a reconfigurable exceptional point. The experimental results show that two eigenmodes of the Fabry–Pérot cavity exhibit sublinear frequency splitting. By electrically reconfiguring the absorber, the eigenfrequency shift can be adaptively enhanced under different background magnetic fields. Using this effect, we demonstrate the detection of subtle magnetic field variations in a strong background, with the system’s response magnified by a factor exceeding 10 and sensitivity increased threefold compared with its conventional Hermitian counterpart. Our study leverages exceptional physics to study the MO effect and develops a new class of reconfigurable MO devices equipped with enhanced sensitivity for potential integration with photonic systems.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"23 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01592-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magneto-optical (MO) effects have a pivotal role in modern photonic devices for light manipulation and sensing, but the study of these effects has so far been limited to the MO Faraday and Kerr effects. Conventional MO systems encounter considerable intrinsic losses, markedly hampering their ability to amplify the MO effects. Here we introduce a loss-enhanced MO effect to sublinearly amplify the frequency response of a non-Hermitian optical cavity under different background magnetic fields. This exceptional MO effect relies on an architecture of MO material embedded in a Fabry–Pérot cavity, accompanied by a polarization-dependent optical absorption, that is, linear dichroism, to construct a reconfigurable exceptional point. The experimental results show that two eigenmodes of the Fabry–Pérot cavity exhibit sublinear frequency splitting. By electrically reconfiguring the absorber, the eigenfrequency shift can be adaptively enhanced under different background magnetic fields. Using this effect, we demonstrate the detection of subtle magnetic field variations in a strong background, with the system’s response magnified by a factor exceeding 10 and sensitivity increased threefold compared with its conventional Hermitian counterpart. Our study leverages exceptional physics to study the MO effect and develops a new class of reconfigurable MO devices equipped with enhanced sensitivity for potential integration with photonic systems.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.