Interactive effects of crop types and nitrogen sources on N2O emissions in a cool humid climate

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-12-19 DOI:10.1007/s11104-024-07116-5
Joannie D’Amours, David E. Pelster, Martin H. Chantigny, Andrew C. VanderZaag, Erin L. Smith, Gilles Bélanger, Émilie Maillard, Marie-Élise Samson, Edward G. Gregorich, Denis A. Angers, Isabelle Royer, Marie-Noëlle Thivierge
{"title":"Interactive effects of crop types and nitrogen sources on N2O emissions in a cool humid climate","authors":"Joannie D’Amours, David E. Pelster, Martin H. Chantigny, Andrew C. VanderZaag, Erin L. Smith, Gilles Bélanger, Émilie Maillard, Marie-Élise Samson, Edward G. Gregorich, Denis A. Angers, Isabelle Royer, Marie-Noëlle Thivierge","doi":"10.1007/s11104-024-07116-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Perennial forages in rotation with annual crops can improve agricultural resilience by increasing soil organic carbon. However, how nitrogen (N) sources interact with rotation diversity to influence soil nitrous oxide (N<sub>2</sub>O) emissions is not well understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>During three snow-free seasons, N<sub>2</sub>O emissions, crop yields, and ancillary variables were measured at three experimental sites with contrasting soil textures (silty clay and sandy loam) in eastern Canada. Using a split-plot design, we compared a corn (<i>Zea mays</i> L.)-soybean (<i>Glycine max</i> [L.] Merr.)-corn rotation and a mixed perennial grass sward receiving N via: i) mineral fertilizer (MIN), ii) liquid dairy manure (LDM), and iii) inclusion of alfalfa (<i>Medicago sativa</i> L.) to the perennial forages with no additional N (LEG).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>When summed across sites over all three years, cumulative N<sub>2</sub>O emissions were greater for LDM than MIN in annual crops (8.75 ± 1.63 and 5.15 ± 0.96 kg N<sub>2</sub>O-N ha<sup>–1</sup>, respectively), but not in perennial grasses (2.95 ± 0.55 and 3.76 ± 0.70 kg N<sub>2</sub>O-N ha<sup>–1</sup>, respectively). When comparing N sources within each crop type over the three years, MIN generated greater yields than LDM in annual and perennial crops, but lower yield-scaled N<sub>2</sub>O emissions than LDM in annual crops only. During forages post-seeding years, area- and yield-scaled N<sub>2</sub>O emissions induced by LDM and LEG were lower than MIN.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our results suggest that for a cool humid climate using LDM or LEG in perennial forages and MIN on annual crops can reduce overall N<sub>2</sub>O emissions, while generating similar or lower yield-scaled emissions.\n</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"51 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07116-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Perennial forages in rotation with annual crops can improve agricultural resilience by increasing soil organic carbon. However, how nitrogen (N) sources interact with rotation diversity to influence soil nitrous oxide (N2O) emissions is not well understood.

Methods

During three snow-free seasons, N2O emissions, crop yields, and ancillary variables were measured at three experimental sites with contrasting soil textures (silty clay and sandy loam) in eastern Canada. Using a split-plot design, we compared a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.)-corn rotation and a mixed perennial grass sward receiving N via: i) mineral fertilizer (MIN), ii) liquid dairy manure (LDM), and iii) inclusion of alfalfa (Medicago sativa L.) to the perennial forages with no additional N (LEG).

Results

When summed across sites over all three years, cumulative N2O emissions were greater for LDM than MIN in annual crops (8.75 ± 1.63 and 5.15 ± 0.96 kg N2O-N ha–1, respectively), but not in perennial grasses (2.95 ± 0.55 and 3.76 ± 0.70 kg N2O-N ha–1, respectively). When comparing N sources within each crop type over the three years, MIN generated greater yields than LDM in annual and perennial crops, but lower yield-scaled N2O emissions than LDM in annual crops only. During forages post-seeding years, area- and yield-scaled N2O emissions induced by LDM and LEG were lower than MIN.

Conclusion

Our results suggest that for a cool humid climate using LDM or LEG in perennial forages and MIN on annual crops can reduce overall N2O emissions, while generating similar or lower yield-scaled emissions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凉爽湿润气候下作物类型和氮源对N2O排放的交互影响
一年生牧草与一年生作物轮作可以通过增加土壤有机碳来提高农业抗灾能力。然而,氮(N)源如何与轮作多样性相互作用以影响土壤一氧化二氮(N2O)排放尚不清楚。方法在三个无雪季节,在加拿大东部三个具有不同土壤质地(粉质粘土和砂质壤土)的试验点测量N2O排放、作物产量和辅助变量。采用裂区设计,我们比较了玉米(Zea mays L.)和大豆(Glycine max [L.])。玉米轮作和多年生禾草混交田通过以下方式吸收氮:1)矿物肥(MIN), 2)液态乳肥(LDM), 3)在多年生牧草中添加苜蓿(Medicago sativa L.),不添加额外氮(LEG)。结果3年的累积N2O排放量,一年生作物LDM大于MIN(分别为8.75±1.63和5.15±0.96 kg N2O- n ha-1),多年生禾草LDM大于MIN(分别为2.95±0.55和3.76±0.70 kg N2O- n ha-1)。对比三年间各作物类型的氮源,一年生和多年生作物中,MIN的产量高于LDM,但仅一年生作物的N2O排放量低于LDM。在牧草播种后的年份,LDM和LEG诱导的N2O排放量在面积和产量尺度上均低于MIN。结论在凉爽潮湿的气候条件下,在多年生牧草中使用LDM或LEG,在一年生作物上使用MIN,可以减少N2O的总排放量,但产生的排放量相似或更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1