{"title":"Atmospheric water harvesting using sulfonated macroporous and hypercrosslinked polystyrene-divinylbenzene beads in a prototype system","authors":"Mahmoud Parvazinia","doi":"10.1016/j.seppur.2024.131096","DOIUrl":null,"url":null,"abstract":"Atmospheric water harvesting using synthesized sulfonated macroporous polystyrene divinylbenzene and sulfonated hypercrosslinked polystyrene divinylbenzene beads as adsorbent materials are evaluated particularly at low humidity conditions. Adsorption isotherms of the synthesized adsorbents show acceptable adsorption characteristics in comparison with promising adsorbents. The hypercrosslinked adsorbent shows few folds higher surface area than macroporous sample but in spite of it, the adsorption capacity is slightly lower. A prototype unit is developed to evaluate the adsorbent materials in a more realistic condition. Prototype data on the synthesized adsorbent shows energy consumption of 1195 KWh/m3 to 1415 KWh/m3 at different outdoor experiments. The performance of the prototype is figured out with respect to energy consumption and water uptake.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"82 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131096","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric water harvesting using synthesized sulfonated macroporous polystyrene divinylbenzene and sulfonated hypercrosslinked polystyrene divinylbenzene beads as adsorbent materials are evaluated particularly at low humidity conditions. Adsorption isotherms of the synthesized adsorbents show acceptable adsorption characteristics in comparison with promising adsorbents. The hypercrosslinked adsorbent shows few folds higher surface area than macroporous sample but in spite of it, the adsorption capacity is slightly lower. A prototype unit is developed to evaluate the adsorbent materials in a more realistic condition. Prototype data on the synthesized adsorbent shows energy consumption of 1195 KWh/m3 to 1415 KWh/m3 at different outdoor experiments. The performance of the prototype is figured out with respect to energy consumption and water uptake.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.