Tong Wang, Xiyao Li, Qiongpeng Dan, Bo Wang, HanBin Wang, Yongzhen Peng
{"title":"Unraveling rapid start-up and stable maintenance of partial nitrification in domestic wastewater under high dissolved oxygen","authors":"Tong Wang, Xiyao Li, Qiongpeng Dan, Bo Wang, HanBin Wang, Yongzhen Peng","doi":"10.1016/j.biortech.2024.131989","DOIUrl":null,"url":null,"abstract":"Partial nitrification (PN), is a promising nitrogen removal technology in wastewater treatment. Contrary to the dogma that low dissolved oxygen (DO) is more conducive to achieving PN, this study successfully established PN within 7 days under high DO conditions (> 6 mg/L). Ultra-stable PN was maintained over 143 days with an average nitrite accumulation ratio of 98 % treating real domestic wastewater. Kinetics indicated that the maximum activity difference increased to 40 folds between ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacterium (NOB), resulting in AOB prospering while NOB declined. High DO operation reshaped the nitrifier community with AOB genera relative abundance increased substantially (0.1 %-1.2 %), while the predominant NOB <ce:italic>Nitrospira</ce:italic> was below the detection limit. Batch test confirmed the reproducibility of this strategy to achieve PN using ordinary activated sludge. This study provides an update on developing a feasible approach for the rapid realization and stable maintenance of mainstream PN.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"31 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131989","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Partial nitrification (PN), is a promising nitrogen removal technology in wastewater treatment. Contrary to the dogma that low dissolved oxygen (DO) is more conducive to achieving PN, this study successfully established PN within 7 days under high DO conditions (> 6 mg/L). Ultra-stable PN was maintained over 143 days with an average nitrite accumulation ratio of 98 % treating real domestic wastewater. Kinetics indicated that the maximum activity difference increased to 40 folds between ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacterium (NOB), resulting in AOB prospering while NOB declined. High DO operation reshaped the nitrifier community with AOB genera relative abundance increased substantially (0.1 %-1.2 %), while the predominant NOB Nitrospira was below the detection limit. Batch test confirmed the reproducibility of this strategy to achieve PN using ordinary activated sludge. This study provides an update on developing a feasible approach for the rapid realization and stable maintenance of mainstream PN.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.