Enhanced Quantum State Transfer via Feedforward Cancellation of Optical Phase Noise

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2024-12-18 DOI:10.1103/physrevlett.133.253202
Benjamin P. Maddox, Jonathan M. Mortlock, Tom R. Hepworth, Adarsh P. Raghuram, Philip D. Gregory, Alexander Guttridge, Simon L. Cornish
{"title":"Enhanced Quantum State Transfer via Feedforward Cancellation of Optical Phase Noise","authors":"Benjamin P. Maddox, Jonathan M. Mortlock, Tom R. Hepworth, Adarsh P. Raghuram, Philip D. Gregory, Alexander Guttridge, Simon L. Cornish","doi":"10.1103/physrevlett.133.253202","DOIUrl":null,"url":null,"abstract":"Many experimental platforms for quantum science depend on state control via laser fields. Frequently, however, the control fidelity is limited by optical phase noise. This is exacerbated in stabilized laser systems where high-frequency phase noise is an unavoidable consequence of feedback. Here we implement an optical feedforward technique to suppress laser phase noise in the stimulated Raman adiabatic passage state transfer of ultracold RbCs molecules, across 114 THz, from a weakly bound Feshbach state to the rovibrational ground state. By performing over 100 state transfers on single molecules, we measure a significantly enhanced transfer efficiency of 98.7(1)% limited only by available laser intensity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"82 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.253202","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many experimental platforms for quantum science depend on state control via laser fields. Frequently, however, the control fidelity is limited by optical phase noise. This is exacerbated in stabilized laser systems where high-frequency phase noise is an unavoidable consequence of feedback. Here we implement an optical feedforward technique to suppress laser phase noise in the stimulated Raman adiabatic passage state transfer of ultracold RbCs molecules, across 114 THz, from a weakly bound Feshbach state to the rovibrational ground state. By performing over 100 state transfers on single molecules, we measure a significantly enhanced transfer efficiency of 98.7(1)% limited only by available laser intensity. Published by the American Physical Society 2024
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过前馈消除光相位噪声增强量子态转移
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
Interacting Dark Energy after DESI Baryon Acoustic Oscillation Measurements New Constraints on the Melting Temperature and Phase Stability of Shocked Iron up to 270 GPa Probed by Ultrafast X-Ray Absorption Spectroscopy Enhanced Quantum State Transfer via Feedforward Cancellation of Optical Phase Noise Self-Interacting Dark Sectors in Supernovae Can Behave as a Relativistic Fluid Noninvertible Symmetry-Resolved Affleck-Ludwig-Cardy Formula and Entanglement Entropy from the Boundary Tube Algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1