{"title":"Perfluorobutanoic acid: a short-chain perfluoroalkyl substance exhibiting estrogenic effects through the estrogen-related receptor γ pathways","authors":"Fangfang Li, Lu Chen, Sha Shi, Wen-Jun Hong, Minjie Li, Liang-Hong Guo","doi":"10.1016/j.jhazmat.2024.136947","DOIUrl":null,"url":null,"abstract":"Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptors γ (ERRγ) pathways. <em>In vivo</em> experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. <em>In vitro</em>, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10<!-- --> <!-- -->nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10<!-- --> <!-- -->nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"14 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136947","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptors γ (ERRγ) pathways. In vivo experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. In vitro, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10 nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10 nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.