Bioaccumulation and potential human health risks of PAHs in marine food webs: A trophic transfer perspective

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-12-18 DOI:10.1016/j.jhazmat.2024.136946
Huijuan Wang, Yilan Shu, Zexing Kuang, Zilin Han, Jiaheng Wu, Xinmiao Huang, Xiaoyong Song, Jing Yang, Zhengqiu Fan
{"title":"Bioaccumulation and potential human health risks of PAHs in marine food webs: A trophic transfer perspective","authors":"Huijuan Wang, Yilan Shu, Zexing Kuang, Zilin Han, Jiaheng Wu, Xinmiao Huang, Xiaoyong Song, Jing Yang, Zhengqiu Fan","doi":"10.1016/j.jhazmat.2024.136946","DOIUrl":null,"url":null,"abstract":"Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in aquatic environments that can accumulate in marine organisms and pose potential health risks to humans through trophic transfer in the food webs. However, the accumulation and health risks of PAHs in organisms at different trophic levels remain unclear. This study investigated the accumulation and trophic transfer of PAHs in 40 marine organisms from Beibu Gulf (China), and assessed their health risks. Utilizing the trophic level spectrum constructed with stable isotope methods, the organisms were categorized into three trophic levels: Omnivorous (15.00%), low-level carnivorous (67.50%), and mid-level carnivorous (17.50%). The contamination levels of total PAHs in these organisms ranged from \"mild pollution\" to \"moderate pollution\", with all organisms exhibiting significant PAH accumulation (Bioconcentration factor value > 2000). Total PAH concentrations increased with higher trophic levels, following the trend of mid-level carnivores > low-level carnivores > omnivores. Notably, only three PAH compounds (Nap, Fla and Phe) showed biomagnification effects, while the others exhibited trophic dilution. Carcinogenic risk assessment indicated an “Unacceptable risk” level for all populations, with the highest risk due to consumption of mid-level carnivorous. These findings offer new insights into the accumulation and health risks of PAHs from a trophic transfer perspective.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"1 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136946","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in aquatic environments that can accumulate in marine organisms and pose potential health risks to humans through trophic transfer in the food webs. However, the accumulation and health risks of PAHs in organisms at different trophic levels remain unclear. This study investigated the accumulation and trophic transfer of PAHs in 40 marine organisms from Beibu Gulf (China), and assessed their health risks. Utilizing the trophic level spectrum constructed with stable isotope methods, the organisms were categorized into three trophic levels: Omnivorous (15.00%), low-level carnivorous (67.50%), and mid-level carnivorous (17.50%). The contamination levels of total PAHs in these organisms ranged from "mild pollution" to "moderate pollution", with all organisms exhibiting significant PAH accumulation (Bioconcentration factor value > 2000). Total PAH concentrations increased with higher trophic levels, following the trend of mid-level carnivores > low-level carnivores > omnivores. Notably, only three PAH compounds (Nap, Fla and Phe) showed biomagnification effects, while the others exhibited trophic dilution. Carcinogenic risk assessment indicated an “Unacceptable risk” level for all populations, with the highest risk due to consumption of mid-level carnivorous. These findings offer new insights into the accumulation and health risks of PAHs from a trophic transfer perspective.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多环芳烃在海洋食物网中的生物累积和对人类健康的潜在风险:营养转移视角
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Mechanistic insights into carbonate radical-driven reactions: Selectivity and the hydrogen atom abstraction route Corrigendum to “An ultrasensitive liquid crystal aptasensing chip assisted by three-way junction DNA pockets for acrylamide detection in food samples” [J Hazard Mater 480 (2024) 136240–136251] Surveillance and environmental risk of very mobile pollutants in urban stormwater and rainwater in a water-stressed city Corrigendum to “Deciphering the distribution and enrichment of arsenic in geothermal water in the Red River Fault Zone, southwest China” [J Hazard Mater 485 (2025) 136756] Simultaneous degradation of organoarsenic and immobilization of arsenate by an electroactive CuFe2O4-CNT/peroxymonosulfate platform: Insights into the distinct roles of the Cu and Fe sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1