{"title":"CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics","authors":"Qiqi Yang, Ming-Jie Dong, Jianglian Xu, Yi Xing, Yue Wang, Jinlong Yang, Xiangdan Meng, Tianzhen Xie, Yingfu Li, Haifeng Dong","doi":"10.1021/jacs.4c08719","DOIUrl":null,"url":null,"abstract":"The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"86 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.