Exploring causes of distinct regional and subseasonal Indian summer monsoon precipitation responses to CO2 removal

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-12-19 DOI:10.1038/s41612-024-00858-0
Seungmok Paik, Daehyun Kim, Soon-Il An, Hyoeun Oh, Jongsoo Shin, Bidyut Bikash Goswami, Seung-Ki Min, Sanjit Kumar Mondal
{"title":"Exploring causes of distinct regional and subseasonal Indian summer monsoon precipitation responses to CO2 removal","authors":"Seungmok Paik, Daehyun Kim, Soon-Il An, Hyoeun Oh, Jongsoo Shin, Bidyut Bikash Goswami, Seung-Ki Min, Sanjit Kumar Mondal","doi":"10.1038/s41612-024-00858-0","DOIUrl":null,"url":null,"abstract":"This study investigates the response of Indian summer monsoon (ISM) precipitation to CO2 removal, with a specific focus on regional and subseasonal variations. Following CO2 removal, monsoon circulation weakens throughout the summer owing to the reduced large-scale meridional temperature gradient around India. Weakened monsoon circulation decreases the local-scale thermodynamic stability within India, following monsoon-onset periods. While the frequency of synoptic-scale ISM low-pressure systems (LPSs) decreases overall, the lower thermodynamic stability causes the LPSs to form and resultantly shift west and south from their typical paths, last longer and move more quickly zonally during August and September. Changes in these rain-producing processes induce distinct regional (Western Ghats, south-central-east India, and Tamil Nadu) and subseasonal precipitation responses. Also, extreme precipitation exhibits similar patterns, but is more strongly affected by changes in LPS. Our results suggest that reliable future projections of regional hydroclimate change require a more accurate understanding of multi-scale precipitation processes.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00858-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00858-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the response of Indian summer monsoon (ISM) precipitation to CO2 removal, with a specific focus on regional and subseasonal variations. Following CO2 removal, monsoon circulation weakens throughout the summer owing to the reduced large-scale meridional temperature gradient around India. Weakened monsoon circulation decreases the local-scale thermodynamic stability within India, following monsoon-onset periods. While the frequency of synoptic-scale ISM low-pressure systems (LPSs) decreases overall, the lower thermodynamic stability causes the LPSs to form and resultantly shift west and south from their typical paths, last longer and move more quickly zonally during August and September. Changes in these rain-producing processes induce distinct regional (Western Ghats, south-central-east India, and Tamil Nadu) and subseasonal precipitation responses. Also, extreme precipitation exhibits similar patterns, but is more strongly affected by changes in LPS. Our results suggest that reliable future projections of regional hydroclimate change require a more accurate understanding of multi-scale precipitation processes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索不同区域和亚季节印度夏季风降水对CO2去除响应的原因
本研究探讨了印度夏季风(ISM)降水对CO2去除的响应,特别关注了区域和亚季节变化。CO2去除后,由于印度周围大尺度经向温度梯度减小,整个夏季季风环流减弱。季风环流减弱降低了印度局地尺度的热力稳定性。虽然天气尺度ISM低压系统(lps)的频率总体减少,但较低的热力学稳定性导致lps形成并最终从其典型路径向西和南移动,在8月和9月期间持续时间更长,纬向移动速度更快。这些降雨过程的变化诱发了不同的区域(西高止山脉、印度中南部和泰米尔纳德邦)和亚季节性降水响应。此外,极端降水也表现出类似的模式,但受LPS变化的影响更大。我们的研究结果表明,可靠的未来区域水文气候变化预测需要更准确地了解多尺度降水过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
The response of tropical cyclone hazard to natural and forced patterns of warming Isotopic source signatures of stratospheric CO inferred from in situ vertical profiles Notable uncertainties in near real-time CO2 emission estimates in China Shifting influences of Indian Ocean Dipole and western Pacific subtropical high on annual precipitation δ18O in southern East Asia The impact of photochemical aging on secondary aerosol formation from a marine engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1