High-Entropy and Na-Rich-Designed High-Energy-Density Na3V2(PO4)3/C Cathode

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-19 DOI:10.1021/acsnano.4c14284
Xiang Ding, Xiaofen Yang, Jie Li, Yibing Yang, Liangwei Liu, Yi Xiao, Lili Han
{"title":"High-Entropy and Na-Rich-Designed High-Energy-Density Na3V2(PO4)3/C Cathode","authors":"Xiang Ding, Xiaofen Yang, Jie Li, Yibing Yang, Liangwei Liu, Yi Xiao, Lili Han","doi":"10.1021/acsnano.4c14284","DOIUrl":null,"url":null,"abstract":"The Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cathode holds the merit of a stable 3D NASICON structure for ultrafast Na<sup>+</sup> diffusion, yet it is still confronted with poor electronic conductivity (10<sup>–9</sup> S cm<sup>–1</sup>) and insufficient energy density (∼370 W h kg<sup>–1</sup>). Herein, a series of high-entropy-doped Na<sub>3+<i>x</i></sub>V<sub>1.76–x</sub>Zn<sub><i>x</i></sub>(GaCrAlIn)<sub>0.06</sub>(PO<sub>4</sub>)<sub>3</sub> (<i>x</i> = 0, 0.2, 0.35, and 0.5) cathodes are systematically prepared with an activated V<sup>5+</sup>⇌V<sup>4+</sup> high-voltage plateau (4.0 V) and elevated discharge capacity, which is derived from the charge compensation of divalent Zn substituting for trivalent V accompanied by extra Na<sup>+</sup> input to create an Na-rich phase. A range of in situ/ex situ characterization studies and DFT calculations radically verify the charge conservation mechanism, enhanced bulk conductivity, and robust structural stability. Accordingly, in half-cells, the optimized cathode (<i>x</i> = 0.35) is capable of giving a much-improved discharge capacity (126.8 mA h g<sup>–1</sup>), reliable cycling stability (97.4%@5000 cycles@40 C), and a competitive energy density (426.1 W h kg<sup>–1</sup>) at 2.0–4.3 V. Upon reducing the discharge cutoff voltage to 1.4 V, the three-electron reaction (V<sup>5+</sup>⇌V<sup>2+</sup>) is entirely activated with superior stability, delivering an unparalleled capacity of 193.4 mA h g<sup>–1</sup> with higher energy density (544.3 W h kg<sup>–1</sup>). Besides, it displays high capacity (126.1 mA h g<sup>–1</sup>) and energy density (417.2 W h kg<sup>–1</sup>) in NVPZGCAI-35//hard carbon full-cells at 1.6–4.1 V. Hence, this pioneering high-entropy and Na-rich strategy is above rubies for developing high-energy-density and high-stability sodium-ion batteries.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"26 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14284","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Na3V2(PO4)3 (NVP) cathode holds the merit of a stable 3D NASICON structure for ultrafast Na+ diffusion, yet it is still confronted with poor electronic conductivity (10–9 S cm–1) and insufficient energy density (∼370 W h kg–1). Herein, a series of high-entropy-doped Na3+xV1.76–xZnx(GaCrAlIn)0.06(PO4)3 (x = 0, 0.2, 0.35, and 0.5) cathodes are systematically prepared with an activated V5+⇌V4+ high-voltage plateau (4.0 V) and elevated discharge capacity, which is derived from the charge compensation of divalent Zn substituting for trivalent V accompanied by extra Na+ input to create an Na-rich phase. A range of in situ/ex situ characterization studies and DFT calculations radically verify the charge conservation mechanism, enhanced bulk conductivity, and robust structural stability. Accordingly, in half-cells, the optimized cathode (x = 0.35) is capable of giving a much-improved discharge capacity (126.8 mA h g–1), reliable cycling stability (97.4%@5000 cycles@40 C), and a competitive energy density (426.1 W h kg–1) at 2.0–4.3 V. Upon reducing the discharge cutoff voltage to 1.4 V, the three-electron reaction (V5+⇌V2+) is entirely activated with superior stability, delivering an unparalleled capacity of 193.4 mA h g–1 with higher energy density (544.3 W h kg–1). Besides, it displays high capacity (126.1 mA h g–1) and energy density (417.2 W h kg–1) in NVPZGCAI-35//hard carbon full-cells at 1.6–4.1 V. Hence, this pioneering high-entropy and Na-rich strategy is above rubies for developing high-energy-density and high-stability sodium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Automating Blueprints for the Assembly of Colloidal Quasicrystal Clusters Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution HfO2 Memristor-Based Flexible Radio Frequency Switches Enhancing Rashba Spin-Splitting Strength by Orbital Hybridization Zeeman Effect-Boosted Spin-Polarized Band Splitting in Diluted Magnetic Photocatalysis Semiconductors for Efficient CO2 Photoreduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1