Benhur Mekonnen, Delphine Flahaut, Abdel Khoukh, Laurent Perrier, Christelle Miqueu, Antoine Bousquet, Joachim Allouche, David Grégoire
{"title":"Para-Fluoro-Thiol Reaction: Powerful Tool for the Versatile Functionalization of Microporous Materials","authors":"Benhur Mekonnen, Delphine Flahaut, Abdel Khoukh, Laurent Perrier, Christelle Miqueu, Antoine Bousquet, Joachim Allouche, David Grégoire","doi":"10.1021/acs.chemmater.4c02441","DOIUrl":null,"url":null,"abstract":"Hyper-cross-linked polystyrene-like polymers (HCPs) represent a cost-effective, highly stable, and scalable class of porous materials with significant potential for environmental remediation, catalysis, gas storage, and separation applications. Herein, we demonstrate that the introduction of pentafluorostyrene in the precursor HCP formulation and the subsequent para-fluoro-thiol reaction is an efficient and energy-saving strategy to functionalize these materials. The important quantity of thiol compounds available in the market offers a wide variety of chemical functions accessible for microporous materials and tailors the properties of HCPs to the specific sorption application. In this study, the proportion of the three building blocks used in the polymerization is first optimized to obtain HCPs exhibiting high microporosity, large Brunauer–Emmett–Teller surface areas, and pore volumes independent of the incorporated functional groups (hexyl, alcohol, amine, or sulfonate). The efficiency and versatility of the para-fluoro-thiol coupling reaction are then demonstrated. Finally, the HCPs′ CO<sub>2</sub> adsorption capacity was accessed, as an analyte example, using a manometric setup. At ambient pressure, uptake capacity is predominantly governed by surface chemistry alongside textural properties, while at higher pressure, the uptake capacity is correlated with pore volume, with a probable influence of the swelling of the material upon adsorption.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"114 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hyper-cross-linked polystyrene-like polymers (HCPs) represent a cost-effective, highly stable, and scalable class of porous materials with significant potential for environmental remediation, catalysis, gas storage, and separation applications. Herein, we demonstrate that the introduction of pentafluorostyrene in the precursor HCP formulation and the subsequent para-fluoro-thiol reaction is an efficient and energy-saving strategy to functionalize these materials. The important quantity of thiol compounds available in the market offers a wide variety of chemical functions accessible for microporous materials and tailors the properties of HCPs to the specific sorption application. In this study, the proportion of the three building blocks used in the polymerization is first optimized to obtain HCPs exhibiting high microporosity, large Brunauer–Emmett–Teller surface areas, and pore volumes independent of the incorporated functional groups (hexyl, alcohol, amine, or sulfonate). The efficiency and versatility of the para-fluoro-thiol coupling reaction are then demonstrated. Finally, the HCPs′ CO2 adsorption capacity was accessed, as an analyte example, using a manometric setup. At ambient pressure, uptake capacity is predominantly governed by surface chemistry alongside textural properties, while at higher pressure, the uptake capacity is correlated with pore volume, with a probable influence of the swelling of the material upon adsorption.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.