{"title":"Therapeutic Efficacy of a Synthetic Brain-Targeted H2S Donor Cross-Linked Nanomicelle in Autism Spectrum Disorder Rats through Aerobic Glycolysis","authors":"Changmei Zhang, Lingyuan Yang, Feng Wang, Mingyuan Liu, Zehui Liu, Mingyang Zou, Lijie Wu","doi":"10.1021/acsami.4c11663","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits, with a notably limited range of brain-targeted medications, particularly in the field of nanomedicine. Herein, we introduce the brain-targeted H<sub>2</sub>S donor cross-linked nanomicelle, named mannose-PEG600-lipoic acid (Man-LA). Man-LA demonstrates enhanced stability and precise brain delivery by interacting with glucose transporter 1 (GLUT1) in astrocytes, facilitating a gradual release of H<sub>2</sub>S that is modulated by glutathione (GSH). <i>In vivo</i>, studies suggest that Man-LA alleviates symptoms of ASD, correlating with increased expression of aerobic glycolysis enzymes, elevated lactate production, and higher H<sub>2</sub>S levels, while preventing damage to hippocampal neurons. <i>In vitro</i>, Man-LA tightly binds to aldehyde dehydrogenase family 3 member B1 (<i>Aldh3b1)</i> in astrocytes, upregulating its expression. This interaction promotes aerobic glycolysis and enhances lactate production. These findings suggest a connection between ASD deficits and the dysregulation of astrocytic aerobic glycolysis, underscoring the role of H<sub>2</sub>S. Identifying the <i>Aldh3b1</i> gene within aerobic glycolysis pathways provides a promising target for ASD treatment.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"87 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11663","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits, with a notably limited range of brain-targeted medications, particularly in the field of nanomedicine. Herein, we introduce the brain-targeted H2S donor cross-linked nanomicelle, named mannose-PEG600-lipoic acid (Man-LA). Man-LA demonstrates enhanced stability and precise brain delivery by interacting with glucose transporter 1 (GLUT1) in astrocytes, facilitating a gradual release of H2S that is modulated by glutathione (GSH). In vivo, studies suggest that Man-LA alleviates symptoms of ASD, correlating with increased expression of aerobic glycolysis enzymes, elevated lactate production, and higher H2S levels, while preventing damage to hippocampal neurons. In vitro, Man-LA tightly binds to aldehyde dehydrogenase family 3 member B1 (Aldh3b1) in astrocytes, upregulating its expression. This interaction promotes aerobic glycolysis and enhances lactate production. These findings suggest a connection between ASD deficits and the dysregulation of astrocytic aerobic glycolysis, underscoring the role of H2S. Identifying the Aldh3b1 gene within aerobic glycolysis pathways provides a promising target for ASD treatment.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.