Junghyun Park, Monsuru Dauda, Mustapha Bello, Ignace Agbadan, Anthony Christian Engler, Jaimal M. Williamson, Varughese Mathew, Sunggook Park, John C. Flake
{"title":"Fundamental Insights into Copper-Epoxy Interfaces for High-Frequency Chip-to-Chip Interconnects","authors":"Junghyun Park, Monsuru Dauda, Mustapha Bello, Ignace Agbadan, Anthony Christian Engler, Jaimal M. Williamson, Varughese Mathew, Sunggook Park, John C. Flake","doi":"10.1021/acsami.4c16414","DOIUrl":null,"url":null,"abstract":"Future processes and materials are needed to enable multichip packages with chip-to-chip (C2C) data rates of 50 GB/s or higher. This presents a fundamental challenge because of the skin effect, which exacerbates signal transmission losses at high frequencies. Our results indicate that smooth copper interconnects with relatively thin cuprous oxides (Cu<sub>2</sub>O, Cu<sup>I</sup>) and amine-functional silane adhesion promoters improve interfacial adhesion with epoxy dielectrics by nearly an order of magnitude. For the first time, we present X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy evidence of Cu(I)–O–Si bond formation at silane-treated interfaces. Thus, relatively smooth interconnects can benefit from reduced skin losses while maintaining their mechanical integrity and reliability. Failure mechanisms of Cu interconnects with cuprous and cupric oxide (CuO, Cu<sup>II</sup>) are explored using scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). These results indicate that both cupric oxides and relatively thick cuprous oxide interfaces lead to relatively weaker interfaces compared with thin cuprous oxides with adhesion promoters.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"61 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16414","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Future processes and materials are needed to enable multichip packages with chip-to-chip (C2C) data rates of 50 GB/s or higher. This presents a fundamental challenge because of the skin effect, which exacerbates signal transmission losses at high frequencies. Our results indicate that smooth copper interconnects with relatively thin cuprous oxides (Cu2O, CuI) and amine-functional silane adhesion promoters improve interfacial adhesion with epoxy dielectrics by nearly an order of magnitude. For the first time, we present X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy evidence of Cu(I)–O–Si bond formation at silane-treated interfaces. Thus, relatively smooth interconnects can benefit from reduced skin losses while maintaining their mechanical integrity and reliability. Failure mechanisms of Cu interconnects with cuprous and cupric oxide (CuO, CuII) are explored using scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). These results indicate that both cupric oxides and relatively thick cuprous oxide interfaces lead to relatively weaker interfaces compared with thin cuprous oxides with adhesion promoters.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.