Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-12-18 DOI:10.1021/acsami.4c18298
Liqin Tang, Yingjie Zhang, Huiru Zhang, Xiao Yang, Jun Wang, Jifu Mao, Lu Wang, Yan Li
{"title":"Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds","authors":"Liqin Tang, Yingjie Zhang, Huiru Zhang, Xiao Yang, Jun Wang, Jifu Mao, Lu Wang, Yan Li","doi":"10.1021/acsami.4c18298","DOIUrl":null,"url":null,"abstract":"Diabetic wounds, often multifactorial and affecting multiple organs, pose substantial challenges to patient well-being, drawing significant interest in biomedical engineering. The demanding wound microenvironment, marked by heightened glucose levels, local exudate, and bacterial infections, emphasizes the pressing demand for advanced wound dressings to meet escalating clinical needs. Herein, a Janus wound dressing with an integration of an antimicrobial hydrophobic nanofiber layer and a 3D hydrophilic sponge was designed and prepared to manage and utilize wound exudate. The hydrophobic layer skillfully combined electrospun poly(ε-caprolactone) (PCL) nanofiber membranes (ENMs) and metal–organic frameworks (MOFs) with peroxidase-like properties by solvent etching, and glucose oxidase (GOx) was grafted through ligand interaction. GOx acts to consume glucose while modulating pH, thus suitable pH and self-supplied H<sub>2</sub>O<sub>2</sub> were able to activate the catalytic activity of MOFs to generate <sup>•</sup>OH. Additionally, hydrophilic 3D sponges are constructed using gas foaming technology, which are tactfully combined with hydrophobic ENMs to form a Janus structure, which can transport exudate through the antimicrobial layer to the sponge layer, while sufficient glucose contact with GOx enhances the antimicrobial properties of the designed Janus wound dressing. Experimental results demonstrate the effectiveness of the cascade effect of GOx@PCL/MOF ENMs, ultimately releasing reactive oxygen species and exhibiting robust antibacterial properties. In vivo animal experiments reveal the ability of the Janus wound dressing to mitigate methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections in the early stages, thereby expediting the wound healing process. In vivo animal study, the Janus wound dressing achieved a healing rate of 54% on day 3. Our findings underscore the substantial potential of the Janus wound dressings in promoting the healing of chronic diabetic wounds.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"11 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18298","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic wounds, often multifactorial and affecting multiple organs, pose substantial challenges to patient well-being, drawing significant interest in biomedical engineering. The demanding wound microenvironment, marked by heightened glucose levels, local exudate, and bacterial infections, emphasizes the pressing demand for advanced wound dressings to meet escalating clinical needs. Herein, a Janus wound dressing with an integration of an antimicrobial hydrophobic nanofiber layer and a 3D hydrophilic sponge was designed and prepared to manage and utilize wound exudate. The hydrophobic layer skillfully combined electrospun poly(ε-caprolactone) (PCL) nanofiber membranes (ENMs) and metal–organic frameworks (MOFs) with peroxidase-like properties by solvent etching, and glucose oxidase (GOx) was grafted through ligand interaction. GOx acts to consume glucose while modulating pH, thus suitable pH and self-supplied H2O2 were able to activate the catalytic activity of MOFs to generate OH. Additionally, hydrophilic 3D sponges are constructed using gas foaming technology, which are tactfully combined with hydrophobic ENMs to form a Janus structure, which can transport exudate through the antimicrobial layer to the sponge layer, while sufficient glucose contact with GOx enhances the antimicrobial properties of the designed Janus wound dressing. Experimental results demonstrate the effectiveness of the cascade effect of GOx@PCL/MOF ENMs, ultimately releasing reactive oxygen species and exhibiting robust antibacterial properties. In vivo animal experiments reveal the ability of the Janus wound dressing to mitigate methicillin-resistant Staphylococcus aureus (MRSA) infections in the early stages, thereby expediting the wound healing process. In vivo animal study, the Janus wound dressing achieved a healing rate of 54% on day 3. Our findings underscore the substantial potential of the Janus wound dressings in promoting the healing of chronic diabetic wounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病伤口通常是多因素造成的,影响多个器官,给患者的健康带来了巨大挑战,引起了生物医学工程的极大兴趣。高血糖、局部渗出物和细菌感染等伤口微环境对敷料的要求十分苛刻,因此迫切需要先进的伤口敷料来满足日益增长的临床需求。在此,我们设计并制备了一种集成了抗菌疏水性纳米纤维层和三维亲水性海绵的 Janus 伤口敷料,以管理和利用伤口渗出物。疏水层巧妙地将电纺聚(ε-己内酯)(PCL)纳米纤维膜(ENMs)和具有过氧化物酶特性的金属有机框架(MOFs)通过溶剂蚀刻结合在一起,并通过配体相互作用接枝葡萄糖氧化酶(GOx)。GOx 在调节 pH 值的同时消耗葡萄糖,因此合适的 pH 值和自供的 H2O2 能够激活 MOF 的催化活性,生成 -OH。此外,还利用气体发泡技术构建了亲水性三维海绵,并将其与疏水性 ENM 巧妙地结合在一起,形成了一种 Janus 结构,可将渗出物通过抗菌层输送到海绵层,而葡萄糖与 GOx 的充分接触则增强了所设计的 Janus 伤口敷料的抗菌性能。实验结果表明,GOx@PCL/MOF ENMs 的级联效应非常有效,最终释放出活性氧并表现出强大的抗菌特性。体内动物实验表明,Janus 伤口敷料能够在早期阶段减轻耐甲氧西林金黄色葡萄球菌(MRSA)感染,从而加快伤口愈合过程。在动物实验中,Janus 伤口敷料第 3 天的愈合率达到 54%。我们的研究结果凸显了 Janus 伤口敷料在促进慢性糖尿病伤口愈合方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Rhamnolipid Modified Silica Nanoparticles Control Rice Blast Disease by Enhancing Antifungal Activity In Vivo and Antioxidant Defense System of Rice (Oryza sativa L.) Physical Vapor Deposition of High-Mobility P-Type Tellurium and Its Applications for Gate-Tunable van der Waals PN Photodiodes Broadband Shortwave Infrared-Emitting Cr3+- and Ni2+-Codoped Y3Al2Ga3O12 Phosphor with Excellent Thermal Stability for Multifunctional Applications Hafnium-Based Metal–Organic Framework Nanosystems Entrapping Squaraines for Efficient NIR-Responsive Photodynamic Therapy Water Uptake, Thin-Film Characterization, and Gravimetric pH-Sensing of Poly(vinylphosphonate)-Based Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1