Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-18 DOI:10.1002/adma.202414195
Shuo Sun, Chen-Zi Zhao, Gao-Yao Liu, Shu-Cheng Wang, Zhong-Heng Fu, Wei-Jin Kong, Jin-Liang Li, Xiang Chen, Xiangyu Zhao, Qiang Zhang
{"title":"Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries","authors":"Shuo Sun, Chen-Zi Zhao, Gao-Yao Liu, Shu-Cheng Wang, Zhong-Heng Fu, Wei-Jin Kong, Jin-Liang Li, Xiang Chen, Xiangyu Zhao, Qiang Zhang","doi":"10.1002/adma.202414195","DOIUrl":null,"url":null,"abstract":"The use of lithium-rich manganese-based oxides (LRMOs) as the cathode in all-solid-state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg<sup>−1</sup>. However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B<sup>3+</sup>) doping and 3D Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO-LRMO) by mechanochemical and subsequent thermally driven diffusion method. Owing to the high binding energy of B─O and high-efficiency ionic networks of nanoscale LBO complex in cathode materials, the as-prepared LBO-LRMO displays highly reversible and activated anionic redox reactions in ASSBs. The designed LBO-LRMO interwoven structure enables robust phase and LBO-LRMO|solid electrolyte interface stability during cycling (over 80% capacity retention after 2000 cycles at 1.0 C with a voltage range of 2.2–4.7 V vs Li/Li<sup>+</sup>). This contribution affords a fundamental understanding of the anionic redox reactions for LRMO in ASSBs and offers an effective strategy to realize highly activated and reversible oxygen redox reactions in LRMO-based ASSBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"79 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414195","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of lithium-rich manganese-based oxides (LRMOs) as the cathode in all-solid-state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg−1. However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B3+) doping and 3D Li2B4O7 (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO-LRMO) by mechanochemical and subsequent thermally driven diffusion method. Owing to the high binding energy of B─O and high-efficiency ionic networks of nanoscale LBO complex in cathode materials, the as-prepared LBO-LRMO displays highly reversible and activated anionic redox reactions in ASSBs. The designed LBO-LRMO interwoven structure enables robust phase and LBO-LRMO|solid electrolyte interface stability during cycling (over 80% capacity retention after 2000 cycles at 1.0 C with a voltage range of 2.2–4.7 V vs Li/Li+). This contribution affords a fundamental understanding of the anionic redox reactions for LRMO in ASSBs and offers an effective strategy to realize highly activated and reversible oxygen redox reactions in LRMO-based ASSBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Constructing High-Performance Composite Epoxy Resins: Interfacial π-π Stacking Interactions-Driven Physical Rolling Behavior of Silica Microspheres Catalyst Design and Engineering for CO2-to-Formic Acid Electrosynthesis for a Low-Carbon Economy (Adv. Mater. 51/2024) Microwave-Powered Liquid Metal Degradation of Polyolefins A Universal Solid-Phase Synthetic Strategy for Ultrafine Intermetallic Libraries Confined in Ordered Mesoporous Carbon Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1