Robust learning-based iterative model predictive control for unknown non-linear systems

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-12-03 DOI:10.1049/cth2.12764
Wataru Hashimoto, Kazumune Hashimoto, Masako Kishida, Shigemasa Takai
{"title":"Robust learning-based iterative model predictive control for unknown non-linear systems","authors":"Wataru Hashimoto,&nbsp;Kazumune Hashimoto,&nbsp;Masako Kishida,&nbsp;Shigemasa Takai","doi":"10.1049/cth2.12764","DOIUrl":null,"url":null,"abstract":"<p>This study presents a learning-based iterative model predictive control (MPC) scheme for unknown (Lipschitz continuous) nonlinear dynamical systems. The proposed method begins by learning the unknown part of the controlled system using a Gaussian process (GP), which helps derive multi-step reachable sets that are guaranteed to encompass the actual system states. At each time step in each iteration, the MPC controller calculates a sequence of control inputs that robustly satisfy state and control constraints, as well as terminal constraints based on the GP-based reachable sets. Then only the first control input is applied to the system. After the iteration, the initial state is reset, and the same procedure is executed with the MPC optimization problem defined by the updated terminal set and cost. As iteration goes on, improvement of the control performance is expected since more data is obtained and the environment is progressively explored. The proposed method provides properties such as recursive feasibility and input to state stability of the goal region under certain assumptions. Moreover, bound on the performance cost in each iteration associated with the implementation of the proposed MPC scheme is also analyzed. The results of the simulation study show that the proposed control scheme can iteratively improve the control performance.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 18","pages":"2540-2554"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12764","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12764","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a learning-based iterative model predictive control (MPC) scheme for unknown (Lipschitz continuous) nonlinear dynamical systems. The proposed method begins by learning the unknown part of the controlled system using a Gaussian process (GP), which helps derive multi-step reachable sets that are guaranteed to encompass the actual system states. At each time step in each iteration, the MPC controller calculates a sequence of control inputs that robustly satisfy state and control constraints, as well as terminal constraints based on the GP-based reachable sets. Then only the first control input is applied to the system. After the iteration, the initial state is reset, and the same procedure is executed with the MPC optimization problem defined by the updated terminal set and cost. As iteration goes on, improvement of the control performance is expected since more data is obtained and the environment is progressively explored. The proposed method provides properties such as recursive feasibility and input to state stability of the goal region under certain assumptions. Moreover, bound on the performance cost in each iteration associated with the implementation of the proposed MPC scheme is also analyzed. The results of the simulation study show that the proposed control scheme can iteratively improve the control performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Robust learning-based iterative model predictive control for unknown non-linear systems Linear quadratic control and estimation synthesis for multi-agent systems with application to formation flight Prescribed-time event-triggered formation control of heterogeneous multi-agent system under actuator faults and external disturbances Interval compression-based model-free control algorithm for reducing actuator execution frequency Unmanned aerial vehicle formation control method based on improved artificial potential field and consensus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1