{"title":"Adaptive Neural Network-Based Backstepping Control of BLDC-Driven Robot Manipulators: An Operational Space Approach with Experimental Validation","authors":"Sukru Unver, Bayram Melih Yilmaz, Enver Tatlicioglu, Irem Saka, Erman Selim, Erkan Zergeroglu","doi":"10.1049/cth2.70016","DOIUrl":null,"url":null,"abstract":"<p>This study concentrates on end effector tracking control of robotic manipulators actuated by brushless direct current (BLDC) motors, having parametric uncertainties in their kinematic, dynamical and electrical sub-systems. Specifically, an operational space controller formulation is proposed that does not rely on inverse kinematics calculations at position level and still ensures practical end effector tracking despite the presence of uncertainties related to the mechanical and electrical dynamics, and the kinematics of the robotic manipulator. Compensation for the uncertainties throughout the entire system is achieved via the use of neural network-based dynamical adaptations, and the overall stability of the closed-loop system is guaranteed via Lyapunov-based arguments. We would like to note that the work addresses the following problems: (i) incorporation of actuator dynamics into the error system in order to achieve increased efficiency, (ii) elimination of the need for position level inverse kinematics calculations for the controller formulation to remove the computational burden and (iii) compensation of the uncertainties throughout the entire subsystem. Experiment studies were carried out on a two degree of freedom planar robot manipulator equipped with BLDC motors to evaluate the effectiveness of the proposed formulation.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study concentrates on end effector tracking control of robotic manipulators actuated by brushless direct current (BLDC) motors, having parametric uncertainties in their kinematic, dynamical and electrical sub-systems. Specifically, an operational space controller formulation is proposed that does not rely on inverse kinematics calculations at position level and still ensures practical end effector tracking despite the presence of uncertainties related to the mechanical and electrical dynamics, and the kinematics of the robotic manipulator. Compensation for the uncertainties throughout the entire system is achieved via the use of neural network-based dynamical adaptations, and the overall stability of the closed-loop system is guaranteed via Lyapunov-based arguments. We would like to note that the work addresses the following problems: (i) incorporation of actuator dynamics into the error system in order to achieve increased efficiency, (ii) elimination of the need for position level inverse kinematics calculations for the controller formulation to remove the computational burden and (iii) compensation of the uncertainties throughout the entire subsystem. Experiment studies were carried out on a two degree of freedom planar robot manipulator equipped with BLDC motors to evaluate the effectiveness of the proposed formulation.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.