A review of memristive reservoir computing for temporal data processing and sensing

InfoScience Pub Date : 2024-08-27 DOI:10.1002/inc2.12013
Yoon Ho Jang, Joon-Kyu Han, Cheol Seong Hwang
{"title":"A review of memristive reservoir computing for temporal data processing and sensing","authors":"Yoon Ho Jang,&nbsp;Joon-Kyu Han,&nbsp;Cheol Seong Hwang","doi":"10.1002/inc2.12013","DOIUrl":null,"url":null,"abstract":"<p>Reservoir computing (RC) is a promising paradigm for machine learning that uses a fixed, randomly generated network, known as the reservoir, to process input data. A memristor with fading memory and nonlinearity characteristics was adopted as a physical reservoir to implement the hardware RC system. This article reviews the device requirements for effective memristive reservoir implementation and methods for obtaining higher-dimensional reservoirs for improving RC system performance. In addition, recent in-sensor RC system studies, which use a memristor that the resistance is changed by an optical signal to realize an energy-efficient machine vision, are discussed. Finally, the limitations that the memristive and in-sensor RC systems encounter when attempting to improve performance further are discussed, and future directions that may overcome these challenges are suggested.</p>","PeriodicalId":100671,"journal":{"name":"InfoScience","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inc2.12013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"InfoScience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inc2.12013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir computing (RC) is a promising paradigm for machine learning that uses a fixed, randomly generated network, known as the reservoir, to process input data. A memristor with fading memory and nonlinearity characteristics was adopted as a physical reservoir to implement the hardware RC system. This article reviews the device requirements for effective memristive reservoir implementation and methods for obtaining higher-dimensional reservoirs for improving RC system performance. In addition, recent in-sensor RC system studies, which use a memristor that the resistance is changed by an optical signal to realize an energy-efficient machine vision, are discussed. Finally, the limitations that the memristive and in-sensor RC systems encounter when attempting to improve performance further are discussed, and future directions that may overcome these challenges are suggested.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆库计算在时间数据处理和感知中的研究进展
储层计算(RC)是一种很有前途的机器学习范例,它使用固定的、随机生成的网络(称为储层)来处理输入数据。采用具有衰落记忆和非线性特性的忆阻器作为物理存储器来实现硬件RC系统。本文综述了有效实现忆阻储层的设备要求和获得高维储层以提高RC系统性能的方法。此外,本文还讨论了最近在传感器内RC系统的研究,该系统利用光信号改变电阻的忆阻器来实现节能的机器视觉。最后,讨论了记忆和传感器内RC系统在试图进一步提高性能时遇到的限制,并提出了可能克服这些挑战的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Strategic facet engineering of bismuth-based photocatalysts for the applications in solar-to-chemical conversion Electrochemical ammonia oxidation reaction: From mechanistic understanding to practical applications Reveal the capacity loss of lithium metal batteries through analytical techniques A review of memristive reservoir computing for temporal data processing and sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1