STING Activation in Macrophages and Microglia Drives Poststroke Inflammation: Implications for Neuroinflammatory Mechanisms and Therapeutic Interventions

IF 4.8 1区 医学 Q1 NEUROSCIENCES CNS Neuroscience & Therapeutics Pub Date : 2024-12-19 DOI:10.1111/cns.70106
Zhiruo Liu, Qin Qin, Shisi Wang, Xinmei Kang, Yuxin Liu, Lei Wei, Zhengqi Lu, Wei Cai, Mengyan Hu
{"title":"STING Activation in Macrophages and Microglia Drives Poststroke Inflammation: Implications for Neuroinflammatory Mechanisms and Therapeutic Interventions","authors":"Zhiruo Liu,&nbsp;Qin Qin,&nbsp;Shisi Wang,&nbsp;Xinmei Kang,&nbsp;Yuxin Liu,&nbsp;Lei Wei,&nbsp;Zhengqi Lu,&nbsp;Wei Cai,&nbsp;Mengyan Hu","doi":"10.1111/cns.70106","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Monocyte-derived macrophages and microglia initially adopt an anti-inflammatory phenotype following stroke but later transition to a pro-inflammatory state. The mechanisms underlying this phenotypic shift remain unclear. This study investigates the activation dynamics of molecular signaling pathways in macrophages and microglia after stroke.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We utilized publicly available single-cell RNA sequencing datasets to examine the activation dynamics of molecular signaling pathways alongside the pro-inflammatory phenotype of macrophages and microglia. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (tMCAO), with the STING inhibitor H151 administered to tMCAO mice. Neurobehavioral performance was assessed using rotarod, foot fault, novel object recognition, and water maze tests at 5-, 7-, 10-, and 14-days post-stroke. Primary microglia and bone marrow-derived macrophages were cultured for in vitro experiments.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Single-cell sequencing data indicated that the activation of STING and subsequent type I interferon signaling drove the phenotypic shift of microglia and macrophages toward a pro-inflammatory state in the stroke lesion. Immunostaining demonstrated that the emergence of pro-inflammatory microglia and macrophages aligned with the activation time course of STING and type I interferon signaling. Continuous phagocytosis by macrophages and microglia led to STING activation, which triggered type I interferon signaling and promoted the phenotypic shift. Inhibition of STING signaling prevented this transition, reduced neuroinflammation, and conferred protection against ischemic stroke.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These findings elucidated the critical role of STING-mediated type I interferon signaling in driving post-stroke neuroinflammation and underscored the potential of STING inhibition as a therapeutic strategy for alleviating neuroinflammatory responses following stroke.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 12","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70106","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Monocyte-derived macrophages and microglia initially adopt an anti-inflammatory phenotype following stroke but later transition to a pro-inflammatory state. The mechanisms underlying this phenotypic shift remain unclear. This study investigates the activation dynamics of molecular signaling pathways in macrophages and microglia after stroke.

Methods

We utilized publicly available single-cell RNA sequencing datasets to examine the activation dynamics of molecular signaling pathways alongside the pro-inflammatory phenotype of macrophages and microglia. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (tMCAO), with the STING inhibitor H151 administered to tMCAO mice. Neurobehavioral performance was assessed using rotarod, foot fault, novel object recognition, and water maze tests at 5-, 7-, 10-, and 14-days post-stroke. Primary microglia and bone marrow-derived macrophages were cultured for in vitro experiments.

Results

Single-cell sequencing data indicated that the activation of STING and subsequent type I interferon signaling drove the phenotypic shift of microglia and macrophages toward a pro-inflammatory state in the stroke lesion. Immunostaining demonstrated that the emergence of pro-inflammatory microglia and macrophages aligned with the activation time course of STING and type I interferon signaling. Continuous phagocytosis by macrophages and microglia led to STING activation, which triggered type I interferon signaling and promoted the phenotypic shift. Inhibition of STING signaling prevented this transition, reduced neuroinflammation, and conferred protection against ischemic stroke.

Conclusion

These findings elucidated the critical role of STING-mediated type I interferon signaling in driving post-stroke neuroinflammation and underscored the potential of STING inhibition as a therapeutic strategy for alleviating neuroinflammatory responses following stroke.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
期刊最新文献
Causal Relationships Between Epilepsy, Anti-Epileptic Drugs, and Serum Vitamin D and Vitamin D Binding Protein: A Bidirectional and Drug Target Mendelian Randomization Study Cognitive Remediation in Patients With Bipolar Disorder: A Randomized Trial by Sequential tDCS and Navigated rTMS Targeting the Primary Visual Cortex Theta Rhythm-Based Attention Switch Training Effectively Modified Negative Attentional Bias Interleukin-3 Modulates Macrophage Phagocytic Activity and Promotes Spinal Cord Injury Repair STING Activation in Macrophages and Microglia Drives Poststroke Inflammation: Implications for Neuroinflammatory Mechanisms and Therapeutic Interventions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1