Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2025-02-01 DOI:10.1016/j.biortech.2024.131988
Pedro Reynolds-Brandão , Francisco Quintas-Nunes , Constança D.F. Bertrand , Rodrigo M. Martins , Maria T.B. Crespo , Cláudia F. Galinha , Francisco X. Nascimento
{"title":"Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity","authors":"Pedro Reynolds-Brandão ,&nbsp;Francisco Quintas-Nunes ,&nbsp;Constança D.F. Bertrand ,&nbsp;Rodrigo M. Martins ,&nbsp;Maria T.B. Crespo ,&nbsp;Cláudia F. Galinha ,&nbsp;Francisco X. Nascimento","doi":"10.1016/j.biortech.2024.131988","DOIUrl":null,"url":null,"abstract":"<div><div>The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times.</div><div>In this work, we analyse the influence of medium formulation on the growth and productivity of axenic <em>Phaeodactylum tricornutum</em> <!-->cultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy.</div><div>We demonstrate that medium formulation significantly affects cell and fucoxanthin concentrations, and that these effects can be effectively monitored using the developed models, free of overfitting. On a separate data subset, the models demonstrated<!--> <!-->high accuracy (cell: R<sup>2</sup> = 0.98, RMSEP = 2.41x10<sup>6</sup> cells/mL; fucoxanthin: R<sup>2</sup> = 0.91 and RMSEP = 0.65 ppm), providing a practical, cost-effective, and environmentally friendly alternative to standard analytical methods.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"418 ","pages":"Article 131988"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424016924","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times.
In this work, we analyse the influence of medium formulation on the growth and productivity of axenic Phaeodactylum tricornutum cultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy.
We demonstrate that medium formulation significantly affects cell and fucoxanthin concentrations, and that these effects can be effectively monitored using the developed models, free of overfitting. On a separate data subset, the models demonstrated high accuracy (cell: R2 = 0.98, RMSEP = 2.41x106 cells/mL; fucoxanthin: R2 = 0.91 and RMSEP = 0.65 ppm), providing a practical, cost-effective, and environmentally friendly alternative to standard analytical methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合光谱技术和机器学习优化三角褐指藻细胞和岩藻黄素产量。
可持续和可控的微藻生物过程的发展依赖于强大和快速的监测工具,这些工具有助于持续的过程优化,确保高生产率和最小化响应时间。在这项工作中,我们分析了培养基配方对无菌三角褐指藻(Phaeodactylum tricornutum)培养物生长和生产力的影响,并使用所得数据开发基于光谱的机器学习(ML)模型。我们的培养分析产生了255个观察结果的综合数据集,使我们能够训练55个(24 + 31)健壮的模型,直接从吸光度或2d荧光光谱预测细胞或岩藻黄素。我们证明了培养基配方显著影响细胞和岩藻黄素浓度,并且这些影响可以使用开发的模型有效地监测,没有过拟合。在单独的数据子集上,模型显示出很高的准确性(细胞:R2 = 0.98,RMSEP = 2.41x106个细胞/mL;岩藻黄素:R2 = 0.91和RMSEP = 0.65 ppm),为标准分析方法提供了实用、经济、环保的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Corrigendum to "Impact of 3D printing materials on microalga Chlorella vulgaris" [Bioresour. Technol. 389 (2023) 129807]. Editorial Board Realization, formation pathways, and control of volatile sulfide components during aerobic composting of food waste biogas residue Chain-elongation routes to caproic acid toward industry-ready continuous operation and low-energy recovery Ecological roles of lactic acid bacteria biodiversity and cross-feeding in shaping the flavor landscape of traditional Huangjiu fermentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1