Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2025-02-01 DOI:10.1016/j.bbapap.2024.141061
Mikhail Matveyenka , Abid Ali , Charles L. Mitchell , Mikhail Sholukh , Dmitry Kurouski
{"title":"Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells","authors":"Mikhail Matveyenka ,&nbsp;Abid Ali ,&nbsp;Charles L. Mitchell ,&nbsp;Mikhail Sholukh ,&nbsp;Dmitry Kurouski","doi":"10.1016/j.bbapap.2024.141061","DOIUrl":null,"url":null,"abstract":"<div><div>Progressive aggregation of α-synuclein (α-Syn), a small cytosolic protein involved in cell vesicle trafficking, in the midbrain, hypothalamus, and thalamus is linked to Parkinson's disease (PD). Amyloid oligomers and fibrils formed as a result of such aggregation are highly toxic to neurons. However, it remains unclear whether amyloid-induced toxicity of neurons is the primary mechanism of the progressive neurodegeneration observed upon PD. In the current study, we investigated cytotoxicity exerted by α-Syn fibrils formed in the lipid-free environment, as well as in the presence of two phospholipids, on macrophages, dendritic cells, and microglia. We found that α-Syn fibrils are far more toxic to dendritic cells and microglia compared to neurons. We also observe low toxicity levels of such amyloids to macrophages. Real-time polymerase chain reaction (RT-PCR) results suggest that toxicity of amyloids aggregates is linked to the levels of autophagy in cells. These results suggest that a strong impairment of the immune system in the brain may be the first stop of neurodegenerative processes that are taking place upon the onset of PD.</div></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1873 2","pages":"Article 141061"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000682","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Progressive aggregation of α-synuclein (α-Syn), a small cytosolic protein involved in cell vesicle trafficking, in the midbrain, hypothalamus, and thalamus is linked to Parkinson's disease (PD). Amyloid oligomers and fibrils formed as a result of such aggregation are highly toxic to neurons. However, it remains unclear whether amyloid-induced toxicity of neurons is the primary mechanism of the progressive neurodegeneration observed upon PD. In the current study, we investigated cytotoxicity exerted by α-Syn fibrils formed in the lipid-free environment, as well as in the presence of two phospholipids, on macrophages, dendritic cells, and microglia. We found that α-Syn fibrils are far more toxic to dendritic cells and microglia compared to neurons. We also observe low toxicity levels of such amyloids to macrophages. Real-time polymerase chain reaction (RT-PCR) results suggest that toxicity of amyloids aggregates is linked to the levels of autophagy in cells. These results suggest that a strong impairment of the immune system in the brain may be the first stop of neurodegenerative processes that are taking place upon the onset of PD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-突触核蛋白原纤维对免疫细胞的细胞毒性研究。
α-突触核蛋白(α-Syn)是一种参与细胞囊泡运输的小细胞质蛋白,在中脑、下丘脑和丘脑中逐渐聚集与帕金森病(PD)有关。淀粉样蛋白低聚物和原纤维是这种聚集的结果,对神经元具有高度毒性。然而,淀粉样蛋白诱导的神经元毒性是否是PD患者进行性神经变性的主要机制尚不清楚。在目前的研究中,我们研究了在无脂环境中以及两种磷脂存在下形成的α-Syn原纤维对巨噬细胞、树突状细胞和小胶质细胞的细胞毒性。我们发现α-Syn原纤维对树突细胞和小胶质细胞的毒性比神经元大得多。我们还观察到这种淀粉样蛋白对巨噬细胞的毒性很低。实时聚合酶链反应(RT-PCR)结果表明,淀粉样蛋白聚集体的毒性与细胞自噬水平有关。这些结果表明,大脑免疫系统的严重损伤可能是PD发病时发生的神经退行性过程的第一站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
55
审稿时长
33 days
期刊介绍: BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.
期刊最新文献
Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011 Unlocking the wound-healing potential: An integrative in silico proteomics and in vivo analysis of Tacorin, a bioactive protein fraction from Ananas comosus (L.) Merr. Stem A distinct co-expressed sulfurtransferase extends the physiological role of mercaptopropionate dioxygenase in Pseudomonas aeruginosa PAO1 CDR identification, epitope mapping and binding affinity determination of novel monoclonal antibodies generated against human apolipoprotein B-100
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1