Deficiency of neutrophil gelatinase-associated lipocalin elicits Hemophilia-like bleeding and clotting disorder.

IF 21 1区 医学 Q1 HEMATOLOGY Blood Pub Date : 2024-12-18 DOI:10.1182/blood.2024026476
Min Xue, Shaoying Wang, Changjiang Li, Yuewei Wang, Ming Liu, Xiaoshan Huang, Gan Wang, Qikai Yin, Dandan Xiao, Shuo Yang, Musan Yan, Liyuan Niu, Muhammad Awais, Chuanbin Shen, Jianxun Wang, Ren Lai, Heyu Ni, Xiaopeng Tang
{"title":"Deficiency of neutrophil gelatinase-associated lipocalin elicits Hemophilia-like bleeding and clotting disorder.","authors":"Min Xue, Shaoying Wang, Changjiang Li, Yuewei Wang, Ming Liu, Xiaoshan Huang, Gan Wang, Qikai Yin, Dandan Xiao, Shuo Yang, Musan Yan, Liyuan Niu, Muhammad Awais, Chuanbin Shen, Jianxun Wang, Ren Lai, Heyu Ni, Xiaopeng Tang","doi":"10.1182/blood.2024026476","DOIUrl":null,"url":null,"abstract":"<p><p>Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in thrombosis patients. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis. This occurs by enhancing tissue factor expression on the cell surface, potentiating various clotting factors such as thrombin, kallikrein, FXIa, and FVIIa, promoting thrombin-induced platelet aggregation, and inhibiting antithrombin. NGAL knockout led to strikingly prolonged clot reaction time and kinetic time in thromboelastography analysis, along with reduced thrombus generation angle and lower thrombus maximum amplitude, which were in line with remarkably prolonged activated partial thromboplastin time and prothrombin time. In several mouse hemostasis and thrombosis models, NGAL overexpression or intravenous administration promoted coagulation and hemostasis and aggravated thrombosis whereas NGAL knockout or treatment with anti-NGAL monoclonal antibody significantly prolonged bleeding time and alleviated thrombus formation. Notably, NGAL knockout prolonged mouse tail bleeding time or artery occlusion time to over 40 or 60 min, respectively, resembling uncontrollable bleeding and clotting disorder seen in Hemophilia mice. Furthermore, anti-NGAL monoclonal antibody treatment markedly reduced the formation of blood clots in inflammation-induced thrombosis models. Collectively, these findings unveil a previously unidentified role of NGAL in the processes of coagulation, hemostasis, and thrombosis, as well as the crosstalk between innate immunity, inflammation, and coagulation. Thus, modulating NGAL levels could potentially help balance thrombotic and hemorrhagic risks.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024026476","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in thrombosis patients. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis. This occurs by enhancing tissue factor expression on the cell surface, potentiating various clotting factors such as thrombin, kallikrein, FXIa, and FVIIa, promoting thrombin-induced platelet aggregation, and inhibiting antithrombin. NGAL knockout led to strikingly prolonged clot reaction time and kinetic time in thromboelastography analysis, along with reduced thrombus generation angle and lower thrombus maximum amplitude, which were in line with remarkably prolonged activated partial thromboplastin time and prothrombin time. In several mouse hemostasis and thrombosis models, NGAL overexpression or intravenous administration promoted coagulation and hemostasis and aggravated thrombosis whereas NGAL knockout or treatment with anti-NGAL monoclonal antibody significantly prolonged bleeding time and alleviated thrombus formation. Notably, NGAL knockout prolonged mouse tail bleeding time or artery occlusion time to over 40 or 60 min, respectively, resembling uncontrollable bleeding and clotting disorder seen in Hemophilia mice. Furthermore, anti-NGAL monoclonal antibody treatment markedly reduced the formation of blood clots in inflammation-induced thrombosis models. Collectively, these findings unveil a previously unidentified role of NGAL in the processes of coagulation, hemostasis, and thrombosis, as well as the crosstalk between innate immunity, inflammation, and coagulation. Thus, modulating NGAL levels could potentially help balance thrombotic and hemorrhagic risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Blood
Blood 医学-血液学
CiteScore
23.60
自引率
3.90%
发文量
955
审稿时长
1 months
期刊介绍: Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.
期刊最新文献
DLBCL: who is high risk and how should treatment be optimized? Peripheral T-cell lymphoma: are all patients high risk? Emapalumab therapy for hemophagocytic lymphohistiocytosis before reduced-intensity transplantation improves chimerism. Prognostic impact of cytogenetic abnormalities detected by FISH in AL amyloidosis with daratumumab-based frontline therapy. GSDME-mediated pyroptosis contributes to chemotherapy-induced platelet hyperactivity and thrombotic potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1