scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbae663
Boya Ji, Xiaoqi Wang, Xiang Wang, Liwen Xu, Shaoliang Peng
{"title":"scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data.","authors":"Boya Ji, Xiaoqi Wang, Xiang Wang, Liwen Xu, Shaoliang Peng","doi":"10.1093/bib/bbae663","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scDCA:从单细胞RNA-seq数据中破译下游功能事件的主要细胞通讯组装。
细胞-细胞通信(CCCs)涉及来自多个发送细胞的信号,这些发送细胞共同影响接收细胞的下游功能过程。目前,缺乏计算方法来量化细胞类型的成对组合对受体细胞中特定功能过程的贡献(例如靶基因表达或细胞状态)。这一限制阻碍了对癌症进展的潜在机制的理解和对潜在治疗靶点的识别。在这里,我们提出了一种基于深度学习的方法,scDCA,从单细胞RNA-seq数据中破译对受体细胞中特定功能事件有更高影响的显性细胞通信组装(DCA)。具体而言,scDCA采用多视图图卷积网络在单细胞分辨率下重建CCCs景观,然后通过注意机制解释模型来识别DCA。以晚期肾细胞癌样本为例,成功应用并验证了scDCA在揭示影响免疫细胞关键基因表达方面的作用。scDCA也被应用和验证,揭示了导致恶性细胞14种典型功能状态变化的DCA。此外,通过比较接受和未接受免疫治疗的患者对某些细胞毒因子的DCA,应用并验证scDCA,探讨临床干预下CCCs的变化。综上所述,scDCA为解读对受体细胞某一特定功能过程影响最大的细胞类型组合提供了一种有价值且实用的工具,对癌症的精准治疗具有重要意义。我们的数据和代码可以在公共GitHub存储库中免费获得:https://github.com/pengsl-lab/scDCA.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1