Transcriptomic analysis reveals three important carbohydrate-active enzymes contributing to starch degradation of oleaginous yeast Lipomyces starkeyi.

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience, Biotechnology, and Biochemistry Pub Date : 2024-12-18 DOI:10.1093/bbb/zbae199
Kentaro Mine, Hiroya Taki, Juyoung Kim, Jiro Seto, Shinji Matsuo, Rikako Sato, Hiroaki Takaku
{"title":"Transcriptomic analysis reveals three important carbohydrate-active enzymes contributing to starch degradation of oleaginous yeast Lipomyces starkeyi.","authors":"Kentaro Mine, Hiroya Taki, Juyoung Kim, Jiro Seto, Shinji Matsuo, Rikako Sato, Hiroaki Takaku","doi":"10.1093/bbb/zbae199","DOIUrl":null,"url":null,"abstract":"<p><p>The oleaginous yeast Lipomyces starkeyi has a high capacity for starch assimilation, but the genes involved and specific mechanisms in starch degradation remain unclear. This study aimed to identify the critical carbohydrate-active enzyme (CAZyme) genes contributing to starch degradation in L. starkeyi. Comparative transcriptome analysis of cells cultured in glucose and soluble starch medium revealed that 55 CAZymes (including transcript IDs 3772, 1803, and 7314) were highly expressed in soluble starch medium. Protein domain structure and disruption mutant analyses revealed that 3772 encodes the sole secreted α-amylase (LsAmy1p), whereas 1803 and 7314 encode secreted α-glucosidase (LsAgd1p and LsAgd2p, respectively). Triple-gene disruption exhibited severely impaired growth in soluble starch, dextrin, and raw starch media, highlighting their critical role in degrading polysaccharides composed of glucose linked by α-1,4-glucosidic bonds. This study provided insights into the complex starch degradation mechanism in L. starkeyi.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae199","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oleaginous yeast Lipomyces starkeyi has a high capacity for starch assimilation, but the genes involved and specific mechanisms in starch degradation remain unclear. This study aimed to identify the critical carbohydrate-active enzyme (CAZyme) genes contributing to starch degradation in L. starkeyi. Comparative transcriptome analysis of cells cultured in glucose and soluble starch medium revealed that 55 CAZymes (including transcript IDs 3772, 1803, and 7314) were highly expressed in soluble starch medium. Protein domain structure and disruption mutant analyses revealed that 3772 encodes the sole secreted α-amylase (LsAmy1p), whereas 1803 and 7314 encode secreted α-glucosidase (LsAgd1p and LsAgd2p, respectively). Triple-gene disruption exhibited severely impaired growth in soluble starch, dextrin, and raw starch media, highlighting their critical role in degrading polysaccharides composed of glucose linked by α-1,4-glucosidic bonds. This study provided insights into the complex starch degradation mechanism in L. starkeyi.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
期刊最新文献
Prevalence of suspected anemia in Japanese young children determined using non-invasive hemoglobin measurements: an observational study. Transcriptomic analysis reveals three important carbohydrate-active enzymes contributing to starch degradation of oleaginous yeast Lipomyces starkeyi. Elucidation of physiological functions of sphingolipid-related molecules by chemical approaches. A novel scaffold for biofilm formation by soil microbes using iron-cross-linked alginate gels. Screening of novel lactic acid bacteria with high induction of IgA production, dendritic cell activation, and IL-12 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1