Metabolomics and Anticancer Potential of the Aerial Parts of Dryopteris ramosa against Cancerous Cell Lines Assisted with Advanced Computational Approaches.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-12-18 DOI:10.2174/0113816128349549241025150229
Khalil Said, Mamoona Rauf, Sumera Afzal Khan, Anwar Hussain, Alaa S Alhegaili, Sajid Hussain, Sajid Ali, Muhammad Hamayun
{"title":"Metabolomics and Anticancer Potential of the Aerial Parts of Dryopteris ramosa against Cancerous Cell Lines Assisted with Advanced Computational Approaches.","authors":"Khalil Said, Mamoona Rauf, Sumera Afzal Khan, Anwar Hussain, Alaa S Alhegaili, Sajid Hussain, Sajid Ali, Muhammad Hamayun","doi":"10.2174/0113816128349549241025150229","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.</p><p><strong>Aim: </strong>The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.</p><p><strong>Methods: </strong>Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.</p><p><strong>Results: </strong>Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in-vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, nhexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. Insilico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1Kcal/Mol.</p><p><strong>Conclusion: </strong>For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128349549241025150229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.

Aim: The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.

Methods: Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.

Results: Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in-vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, nhexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. Insilico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1Kcal/Mol.

Conclusion: For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Effect of Fibrates on Lipoprotein-associated Phospholipase A2 Mass and Activity: A Systematic Review and Meta-analysis of Controlled Clinical Trials. Exploration of Novel Therapeutic Targets for Breast Carcinoma and Molecular Docking Studies of Anticancer Compound Libraries with Cyclin-dependent Kinase 4/6 (CDK4/6): A Comprehensive Study of Signalling Pathways for Drug Repurposing. Use of SGLT2 Inhibitors in Frail Older Adults is Associated with Increased Survival: A Retrospective Study. Oral Administration of Hydrogen-rich Water: Biomedical Activities, Potential Mechanisms, and Clinical Applications. A Comparative Review on the Production of Factor VIII in Human and Non-human Hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1