Network Pharmacology and In Silico Elucidation of Phytochemicals Extracted from Ajwa Dates (Phoenix dactylifera L.) to Inhibit Akt and PI3K Causing Triple Negative Breast Cancer (TNBC).

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-12-18 DOI:10.2174/0113816128348876241017101729
Md Abul Bashar, Md Arju Hossain, Md Reduanul Haque Kavey, Rayhanuzzaman Shazib, Md Shofiqul Islam, Siddique Akber Ansari, Md Habibur Rahman
{"title":"Network Pharmacology and In Silico Elucidation of Phytochemicals Extracted from Ajwa Dates (Phoenix dactylifera L.) to Inhibit Akt and PI3K Causing Triple Negative Breast Cancer (TNBC).","authors":"Md Abul Bashar, Md Arju Hossain, Md Reduanul Haque Kavey, Rayhanuzzaman Shazib, Md Shofiqul Islam, Siddique Akber Ansari, Md Habibur Rahman","doi":"10.2174/0113816128348876241017101729","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>About 10-15% of all breast cancers comprise triple-negative breast cancer (TNBC), defined as cancer cells that lack receptors for the ER, PR, and HER2 protein receptors. Due to the absence of these receptors, treating TNBC using conventional chemotherapy is challenging and, therefore, requires the discovery of novel chemotherapeutic agents derived from natural sources.</p><p><strong>Objective: </strong>The current work was intended to study the potential phytochemicals of Ajwa dates (Phoenix dactylifera L.) with the predicted potential targets (namely, Akt and PI3K) to determine possible TNBC inhibitors.</p><p><strong>Methods: </strong>We harnessed network pharmacology, molecular docking, drug-likeness studies, Molecular Dynamics (MD) simulation, and binding free energy (MM-GBSA) calculation to get phytochemicals with potential effects against TNBC. Firstly, molecular docking was performed on 125 phytochemicals against the Akt and PI3K proteins utilizing PyRx. Then, the phytochemicals with the highest binding affinity (≤ -8.1 kcal/mol) were examined for in silico drug-likeness and toxicity profiles. Finally, phytochemicals with optimal druglikeness and toxicity profiles were studied by Molecular Dynamics (MD) simulation and binding free energy (MM-GBSA) to identify compounds that can form stable complexes.</p><p><strong>Results: </strong>The results of the network pharmacology revealed that the Akt and PI3K proteins are potential targets of TNBC for the phytochemicals of Phoenix dactylifera L. used in this study. The outcomes of molecular docking displayed that among 125 phytochemicals, 42 of them (with a binding affinity ≤ -8.1 kcal/mol) have potentially inhibiting effects on both proteins PI3K and Akt expressed in TNBC. Then, the results of in silico drug-likeness identified seven phytochemicals with optimal pharmacokinetic profiles. Furthermore, toxicity studies showed that three phytochemicals (namely, Chrysoeriol, Daidzein, and Glycitein) did not cause any toxicities. Finally, the Molecular Dynamics (MD) simulation studies and binding free energy (MM-GBSA) verified that Daidzein stayed within the binding cavities of both proteins (Akt and PI3K) by establishing a stable protein-ligand complex during simulation.</p><p><strong>Conclusion: </strong>Taken together, the current work emphasizes the potential effects of Daidzein from Phoenix dactylifera L. against TNBC, and it can be further studied to establish it as a standard chemotherapy for TNBC.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128348876241017101729","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: About 10-15% of all breast cancers comprise triple-negative breast cancer (TNBC), defined as cancer cells that lack receptors for the ER, PR, and HER2 protein receptors. Due to the absence of these receptors, treating TNBC using conventional chemotherapy is challenging and, therefore, requires the discovery of novel chemotherapeutic agents derived from natural sources.

Objective: The current work was intended to study the potential phytochemicals of Ajwa dates (Phoenix dactylifera L.) with the predicted potential targets (namely, Akt and PI3K) to determine possible TNBC inhibitors.

Methods: We harnessed network pharmacology, molecular docking, drug-likeness studies, Molecular Dynamics (MD) simulation, and binding free energy (MM-GBSA) calculation to get phytochemicals with potential effects against TNBC. Firstly, molecular docking was performed on 125 phytochemicals against the Akt and PI3K proteins utilizing PyRx. Then, the phytochemicals with the highest binding affinity (≤ -8.1 kcal/mol) were examined for in silico drug-likeness and toxicity profiles. Finally, phytochemicals with optimal druglikeness and toxicity profiles were studied by Molecular Dynamics (MD) simulation and binding free energy (MM-GBSA) to identify compounds that can form stable complexes.

Results: The results of the network pharmacology revealed that the Akt and PI3K proteins are potential targets of TNBC for the phytochemicals of Phoenix dactylifera L. used in this study. The outcomes of molecular docking displayed that among 125 phytochemicals, 42 of them (with a binding affinity ≤ -8.1 kcal/mol) have potentially inhibiting effects on both proteins PI3K and Akt expressed in TNBC. Then, the results of in silico drug-likeness identified seven phytochemicals with optimal pharmacokinetic profiles. Furthermore, toxicity studies showed that three phytochemicals (namely, Chrysoeriol, Daidzein, and Glycitein) did not cause any toxicities. Finally, the Molecular Dynamics (MD) simulation studies and binding free energy (MM-GBSA) verified that Daidzein stayed within the binding cavities of both proteins (Akt and PI3K) by establishing a stable protein-ligand complex during simulation.

Conclusion: Taken together, the current work emphasizes the potential effects of Daidzein from Phoenix dactylifera L. against TNBC, and it can be further studied to establish it as a standard chemotherapy for TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Effect of Fibrates on Lipoprotein-associated Phospholipase A2 Mass and Activity: A Systematic Review and Meta-analysis of Controlled Clinical Trials. Exploration of Novel Therapeutic Targets for Breast Carcinoma and Molecular Docking Studies of Anticancer Compound Libraries with Cyclin-dependent Kinase 4/6 (CDK4/6): A Comprehensive Study of Signalling Pathways for Drug Repurposing. Use of SGLT2 Inhibitors in Frail Older Adults is Associated with Increased Survival: A Retrospective Study. Oral Administration of Hydrogen-rich Water: Biomedical Activities, Potential Mechanisms, and Clinical Applications. A Comparative Review on the Production of Factor VIII in Human and Non-human Hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1