The type of environment has a greater impact on the larval microbiota of Anopheles arabiensis than on the microbiota of their breeding water.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2025-01-07 DOI:10.1093/femsec/fiae161
Lorenzo Assentato, Louise K J Nilsson, Carl Brunius, Vilhelm Feltelius, Rasmus Elleby, Richard J Hopkins, Olle Terenius
{"title":"The type of environment has a greater impact on the larval microbiota of Anopheles arabiensis than on the microbiota of their breeding water.","authors":"Lorenzo Assentato, Louise K J Nilsson, Carl Brunius, Vilhelm Feltelius, Rasmus Elleby, Richard J Hopkins, Olle Terenius","doi":"10.1093/femsec/fiae161","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquito larvae of the genus Anopheles develop entirely in water, frequently visiting the surface for air. The aquatic environment plays a key role in shaping their microbiota, but the connection between environmental characteristics of breeding sites and larval microbiota remains underexplored. This study focuses on Anopheles arabiensis, which inhabits the surface microlayer (SML) of breeding sites, a zone with high particle density. We hypothesized that the SML could allow us to capture the diversity of the surrounding environment, and in turn its influence on the larval microbial communities. To test this, we collected A. arabiensis larvae and SML samples from various breeding sites categorized by environmental features. Our results confirm that breeding site characteristics are significant drivers of the bacterial species present in mosquito larvae. Additionally, we found that the larval micro-environment selectively shapes its microbiota, highlighting a dynamic interplay between environmental and internal factors. Interestingly, specific bacterial families were associated with the presence or absence of larvae in breeding sites, suggesting potential ecological roles. These findings expand our understanding of vector-mosquito microbiota, emphasizing the importance of breeding site features in shaping larval microbial communities and providing a foundation for future research on mosquito ecology and control strategies.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae161","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mosquito larvae of the genus Anopheles develop entirely in water, frequently visiting the surface for air. The aquatic environment plays a key role in shaping their microbiota, but the connection between environmental characteristics of breeding sites and larval microbiota remains underexplored. This study focuses on Anopheles arabiensis, which inhabits the surface microlayer (SML) of breeding sites, a zone with high particle density. We hypothesized that the SML could allow us to capture the diversity of the surrounding environment, and in turn its influence on the larval microbial communities. To test this, we collected A. arabiensis larvae and SML samples from various breeding sites categorized by environmental features. Our results confirm that breeding site characteristics are significant drivers of the bacterial species present in mosquito larvae. Additionally, we found that the larval micro-environment selectively shapes its microbiota, highlighting a dynamic interplay between environmental and internal factors. Interestingly, specific bacterial families were associated with the presence or absence of larvae in breeding sites, suggesting potential ecological roles. These findings expand our understanding of vector-mosquito microbiota, emphasizing the importance of breeding site features in shaping larval microbial communities and providing a foundation for future research on mosquito ecology and control strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境类型对阿拉伯按蚊幼虫微生物群的影响大于对其繁殖水体微生物群的影响。
按蚊属的蚊子幼虫完全在水中发育,经常到水面呼吸空气。水生环境对其微生物群的形成起着关键作用,但繁殖地环境特征与幼虫微生物群之间的联系仍未得到充分探讨。本研究重点研究了居住在繁殖场所表面微层(SML)的阿拉伯按蚊(Anopheles arabiensis)。我们假设SML可以让我们捕捉到周围环境的多样性,进而了解其对幼虫微生物群落的影响。为了验证这一点,我们从不同的按环境特征分类的繁殖地点收集了阿拉伯按蚊幼虫和SML样本。我们的研究结果证实,孳生地点特征是蚊子幼虫中存在的细菌种类的重要驱动因素。此外,我们发现幼虫的微环境选择性地塑造了它的微生物群,突出了环境和内部因素之间的动态相互作用。有趣的是,特定的细菌科与繁殖地幼虫的存在或缺失有关,这表明了潜在的生态作用。这些发现扩大了我们对媒介蚊微生物群的认识,强调了孳生地特征在形成幼虫微生物群落中的重要性,为今后蚊子生态学和控制策略的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Bark beetle infestation alters mycobiomes in wood, litter, and soil associated with Norway spruce. Temperature induced changes in the relevance of viral lysis and microzooplankton grazing of Antarctic phytoplankton indicates future alterations in seasonal carbon flow. The nasal microbiota of two marine fish species: diversity, community structure, variability and first insights into the impacts of climate change-related stressors. From Eggs to Guts: Symbiotic Association of Sodalis nezarae sp. nov. with the Southern Green Shield Bug Nezara viridula. Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1