Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy.

IF 2.3 3区 医学 Q2 BEHAVIORAL SCIENCES Epilepsy & Behavior Pub Date : 2024-12-17 DOI:10.1016/j.yebeh.2024.110219
Peravina Thergarajan, Terence J O'Brien, Nigel C Jones, Idrish Ali
{"title":"Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy.","authors":"Peravina Thergarajan, Terence J O'Brien, Nigel C Jones, Idrish Ali","doi":"10.1016/j.yebeh.2024.110219","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.</p>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"163 ","pages":"110219"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yebeh.2024.110219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epilepsy & Behavior
Epilepsy & Behavior 医学-行为科学
CiteScore
5.40
自引率
15.40%
发文量
385
审稿时长
43 days
期刊介绍: Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy. Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging. From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.
期刊最新文献
Effects of immune modulatory treatment on language and psychiatric profile in patients with electrical status epilepticus in sleep (ESES). The impact of an epilepsy peer education program on knowledge, attitudes, and first aid approaches: A quasi-experimental design. The relationship between intrinsic spirituality, resilience and hopelessness in patients with epilepsy: A PATH analysis. Effect of antiepileptic drug monotherapy on endogenous sex hormonal profile in men and women with epilepsy. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1