Analysis of Fibroblast Growth Factor 2 Impact and Mechanism on Broncho-Pulmonary Dysplasia.

IF 2.5 4区 医学 Q3 ALLERGY International Archives of Allergy and Immunology Pub Date : 2024-12-18 DOI:10.1159/000543105
Ling Lu, Ye-Dan Liu, Dong-Yun Liu, Rong Jin, Zheng-Hai Qu
{"title":"Analysis of Fibroblast Growth Factor 2 Impact and Mechanism on Broncho-Pulmonary Dysplasia.","authors":"Ling Lu, Ye-Dan Liu, Dong-Yun Liu, Rong Jin, Zheng-Hai Qu","doi":"10.1159/000543105","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is an important mechanism for the onset and development of broncho-pulmonary dysplasia (BPD).The role of FGF-2 in BPD is currently unclear. The aim of our study is to investigate the expression of FGF-2 in lung tissue of BPD mice, to further clarify the effect of FGF-2 on EMT in alveolar epithelial cells and to actively search for possible signaling pathways.</p><p><strong>Methods: </strong>The BPD model was induced by exposure to hyperoxia. Lung tissue samples were collected and Hematoxylin and eosin (HE) staining was used to determine the modelling effect. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), immunohistochemistry were used to detect FGF-2 expression in BPD mice. To further investigate the effect of FGF-2 supplementation and deficiency on EMT in alveolar epithelial cells, A549 cells were cryopreserved, resuspended, cultured and passaged. Transforming growth factor-β1 (TGFβ1) was used to induce EMT. FGF-2 small interfering RNA fragments were synthesised and screened. Fbroblast growth factor receptor1 (FGFR1) expression was inhibited by BGJ398.  (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium) (MTS) assay was used to detect the effect of FGF-2 and Infigratinib (BGJ398) on cell proliferation. We used qRT-PCR and Western blot to detect the expression of epithelial cell markers, mesenchymal cell markers and EMT-related signaling pathway proteins.</p><p><strong>Results: </strong>Our results showed that the successful established hyperoxia mice model were characteristic by BPD. Hyperoxia decreased FGF-2 on day 4, upregulated FGF-2 on day 21, which resulted in EMT. In vitro, we found that FGF-2 alone increased the expression of mesenchymal markers, decreased the expression of epithelial markers and activated Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT), Small mother against decapentaplegic (Smad), mitogen-activated protein kinase (P38) and extracellular signal-regulated kinase (ERK) signaling pathways. FGF-2 could not reverse but synergistically promote TGF-β1-induced EMT of alveolar epithelial cells. Silencing FGF-2 increased the expression of epithelial marker E-cadherin, inhibited the PI3K/AKT, Smad, and P38 signaling pathways activated by TGF-β1, but activated ERK signaling. FGF-2 receptor inhibitor BGJ398 reversed TGF-β1-induced EMT, decreased the expression of FGFR1, and inhibited ERK signaling pathway activation.</p><p><strong>Conclusions: </strong>FGF2 was closely associated with EMT in BPD mice. Both high and low levels of FGF2 promoted EMT in A549. The FGF-2 receptor inhibitor BGJ398 reversed TGF-β1-induced EMT in A549 by inhibiting the FGFR1/P-ERK signaling pathway.</p>","PeriodicalId":13652,"journal":{"name":"International Archives of Allergy and Immunology","volume":" ","pages":"1-24"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Archives of Allergy and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is an important mechanism for the onset and development of broncho-pulmonary dysplasia (BPD).The role of FGF-2 in BPD is currently unclear. The aim of our study is to investigate the expression of FGF-2 in lung tissue of BPD mice, to further clarify the effect of FGF-2 on EMT in alveolar epithelial cells and to actively search for possible signaling pathways.

Methods: The BPD model was induced by exposure to hyperoxia. Lung tissue samples were collected and Hematoxylin and eosin (HE) staining was used to determine the modelling effect. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), immunohistochemistry were used to detect FGF-2 expression in BPD mice. To further investigate the effect of FGF-2 supplementation and deficiency on EMT in alveolar epithelial cells, A549 cells were cryopreserved, resuspended, cultured and passaged. Transforming growth factor-β1 (TGFβ1) was used to induce EMT. FGF-2 small interfering RNA fragments were synthesised and screened. Fbroblast growth factor receptor1 (FGFR1) expression was inhibited by BGJ398.  (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium) (MTS) assay was used to detect the effect of FGF-2 and Infigratinib (BGJ398) on cell proliferation. We used qRT-PCR and Western blot to detect the expression of epithelial cell markers, mesenchymal cell markers and EMT-related signaling pathway proteins.

Results: Our results showed that the successful established hyperoxia mice model were characteristic by BPD. Hyperoxia decreased FGF-2 on day 4, upregulated FGF-2 on day 21, which resulted in EMT. In vitro, we found that FGF-2 alone increased the expression of mesenchymal markers, decreased the expression of epithelial markers and activated Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT), Small mother against decapentaplegic (Smad), mitogen-activated protein kinase (P38) and extracellular signal-regulated kinase (ERK) signaling pathways. FGF-2 could not reverse but synergistically promote TGF-β1-induced EMT of alveolar epithelial cells. Silencing FGF-2 increased the expression of epithelial marker E-cadherin, inhibited the PI3K/AKT, Smad, and P38 signaling pathways activated by TGF-β1, but activated ERK signaling. FGF-2 receptor inhibitor BGJ398 reversed TGF-β1-induced EMT, decreased the expression of FGFR1, and inhibited ERK signaling pathway activation.

Conclusions: FGF2 was closely associated with EMT in BPD mice. Both high and low levels of FGF2 promoted EMT in A549. The FGF-2 receptor inhibitor BGJ398 reversed TGF-β1-induced EMT in A549 by inhibiting the FGFR1/P-ERK signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
105
审稿时长
2 months
期刊介绍: ''International Archives of Allergy and Immunology'' provides a forum for basic and clinical research in modern molecular and cellular allergology and immunology. Appearing monthly, the journal publishes original work in the fields of allergy, immunopathology, immunogenetics, immunopharmacology, immunoendocrinology, tumor immunology, mucosal immunity, transplantation and immunology of infectious and connective tissue diseases.
期刊最新文献
α2-3 Sialic acids-decorated allergens exert a tolerogenic effect on CD4 T cells from Der p 2 - allergic patients. Analysis of Fibroblast Growth Factor 2 Impact and Mechanism on Broncho-Pulmonary Dysplasia. Allergen Sensitization in Allergic Skin Diseases in Suzhou, East China: A Retrospective Study from 2021 to 2023. Long-Term Outcomes After Slow Low-Dose Oral Immunotherapy for Cow's Milk. Efficacy and safety of Tumour necrosis factor inhibitors, Interleukin-17 inhibitors, and Janus kinase inhibitors in patients with non-radiographic axial spondyloarthritis: A systematic review and network meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1