Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro.

IF 5.4 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE International endodontic journal Pub Date : 2024-12-19 DOI:10.1111/iej.14183
Chatvadee Kornsuthisopon, Ajjima Chansaenroj, Ravipha Suwittayarak, Suphalak Phothichailert, Khunakon Usarprom, Apicha Srikacha, Sornkanok Vimolmangkang, Chaloemrit Phrueksotsai, Lakshman P Samaranayake, Thanaphum Osathanon
{"title":"Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro.","authors":"Chatvadee Kornsuthisopon, Ajjima Chansaenroj, Ravipha Suwittayarak, Suphalak Phothichailert, Khunakon Usarprom, Apicha Srikacha, Sornkanok Vimolmangkang, Chaloemrit Phrueksotsai, Lakshman P Samaranayake, Thanaphum Osathanon","doi":"10.1111/iej.14183","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.</p><p><strong>Methodology: </strong>hDPSCs were harvested from human dental pulp tissues. The cells were treated with CBD at concentrations of 1.25, 2.5, 5, 10, 25 and 50 μg/mL. Cell responses in terms of cell proliferation, colony-forming unit, cell cycle progression, cell migration, apoptosis and odonto/osteogenic differentiation of hDPSCs were assessed in the normal culture condition and P. gingivalis lipopolysaccharide (LPS)-induced 'inflammatory' milieus. RNA sequencing and proteomic analysis were performed to predict target pathways impacted by CBD.</p><p><strong>Results: </strong>CBD minimally affects hDPSCs' behaviour under normal culture growth milieu in normal conditions. However, an optimal concentration of 1.25 μg/mL CBD significantly countered the harmful effects of LPS, indicated by the promoting cell proliferation and restoring the odonto/osteogenic differentiation potential of hDPSCs under LPS-treated conditions. The proteomic analysis demonstrated that several proteins involved in cell proliferation and differentiation were upregulated following CBD exposure, including CCL8, CDC42 and KFL5. RNA sequencing data indicated that CBD upregulated the Notch signalling pathway. In an inhibitory experiment, DAPT, a Notch inhibitor, reduced the effect of CBD-rescued LPS-attenuated mineralization in hDPSCs, suggesting that CBD potentially mediates Notch activation to exert its impact on odonto/osteogenic differentiation of hDPSCs.</p><p><strong>Conclusions: </strong>CBD recovers the proliferation and survival of hDPSCs following exposure to LPS. Additionally, we report that CBD-mediated Notch activation effectively restores the odonto/osteogenic differentiation ability of hDPSCs under inflamed conditions. These results underscore the potential role of CBD as a therapeutic option to enhance dentine regeneration.</p>","PeriodicalId":13724,"journal":{"name":"International endodontic journal","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International endodontic journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/iej.14183","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.

Methodology: hDPSCs were harvested from human dental pulp tissues. The cells were treated with CBD at concentrations of 1.25, 2.5, 5, 10, 25 and 50 μg/mL. Cell responses in terms of cell proliferation, colony-forming unit, cell cycle progression, cell migration, apoptosis and odonto/osteogenic differentiation of hDPSCs were assessed in the normal culture condition and P. gingivalis lipopolysaccharide (LPS)-induced 'inflammatory' milieus. RNA sequencing and proteomic analysis were performed to predict target pathways impacted by CBD.

Results: CBD minimally affects hDPSCs' behaviour under normal culture growth milieu in normal conditions. However, an optimal concentration of 1.25 μg/mL CBD significantly countered the harmful effects of LPS, indicated by the promoting cell proliferation and restoring the odonto/osteogenic differentiation potential of hDPSCs under LPS-treated conditions. The proteomic analysis demonstrated that several proteins involved in cell proliferation and differentiation were upregulated following CBD exposure, including CCL8, CDC42 and KFL5. RNA sequencing data indicated that CBD upregulated the Notch signalling pathway. In an inhibitory experiment, DAPT, a Notch inhibitor, reduced the effect of CBD-rescued LPS-attenuated mineralization in hDPSCs, suggesting that CBD potentially mediates Notch activation to exert its impact on odonto/osteogenic differentiation of hDPSCs.

Conclusions: CBD recovers the proliferation and survival of hDPSCs following exposure to LPS. Additionally, we report that CBD-mediated Notch activation effectively restores the odonto/osteogenic differentiation ability of hDPSCs under inflamed conditions. These results underscore the potential role of CBD as a therapeutic option to enhance dentine regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International endodontic journal
International endodontic journal 医学-牙科与口腔外科
CiteScore
10.20
自引率
28.00%
发文量
195
审稿时长
4-8 weeks
期刊介绍: The International Endodontic Journal is published monthly and strives to publish original articles of the highest quality to disseminate scientific and clinical knowledge; all manuscripts are subjected to peer review. Original scientific articles are published in the areas of biomedical science, applied materials science, bioengineering, epidemiology and social science relevant to endodontic disease and its management, and to the restoration of root-treated teeth. In addition, review articles, reports of clinical cases, book reviews, summaries and abstracts of scientific meetings and news items are accepted. The International Endodontic Journal is essential reading for general dental practitioners, specialist endodontists, research, scientists and dental teachers.
期刊最新文献
Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. A 4-year follow-up of root canal obturation using a calcium silicate-based sealer and a zinc oxide-eugenol sealer: A randomized clinical trial. Issue Information T-access cavity preparation for maxillary molars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1