Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gut Microbes Pub Date : 2025-12-01 Epub Date: 2024-12-18 DOI:10.1080/19490976.2024.2440120
Madison Moore, Hunter D Whittington, Rebecca Knickmeyer, M Andrea Azcarate-Peril, Jose M Bruno-Bárcena
{"title":"Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers.","authors":"Madison Moore, Hunter D Whittington, Rebecca Knickmeyer, M Andrea Azcarate-Peril, Jose M Bruno-Bárcena","doi":"10.1080/19490976.2024.2440120","DOIUrl":null,"url":null,"abstract":"<p><p>Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL<sup>-1</sup>) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO<sub>2</sub>, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2440120"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2440120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL-1) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO2, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由n-乙酰基-乳胺富集纤维形成的代谢内聚肠道联合体的非随机重组。
饮食是塑造人类微生物群的主要因素之一,但我们对特定饮食成分如何影响微生物群落的组装和随后对压力干扰的稳定性的理解-例如增加资源可用性(摄食率)-仍然不完整。本研究探讨了三名健康婴儿粪便样本中微生物群落的可重复重组、代谢相互作用和组成稳定性。使用单步填充床反应器(PBR)系统,我们评估了暴露于乳糖、葡萄糖、半乳糖低聚糖(GOS)和人源化GOS (hGOS)的菌群的重组和代谢输出。通过多样性指标和网络分析发现,复合碳水化合物,特别是母乳中含有低包合物(~1.25 gL-1)成分的碳水化合物,如n -乙酰-乳胺(LacNAc),在不同的摄食率下促进了分类和代谢稳定性。靶向代谢组学强调了对不同碳水化合物的不同代谢反应:GOS与乳酸、乳糖到丙酸、蔗糖到丁酸和二氧化碳的增加有关,而GOS或hGOS的胆汁盐的引入导致丁酸盐减少和氢气产量增加。本研究验证了单步pbr在研究营养压力干扰下微生物群落稳定性和功能方面的可靠性,为微生物群落的膳食调节及其生态动态提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
期刊最新文献
Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic Escherichia coli O157:H7. Gut microbiota and microbial metabolites for osteoporosis. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Systematically-designed mixtures outperform single fibers for gut microbiota support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1