首页 > 最新文献

Gut Microbes最新文献

英文 中文
Failure of colonization following gut microbiota transfer exacerbates DSS-induced colitis. 肠道菌群转移后定植失败会加剧dss诱导的结肠炎。
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-15 DOI: 10.1080/19490976.2024.2447815
Kevin L Gustafson, Trevor R Rodriguez, Zachary L McAdams, Lyndon M Coghill, Aaron C Ericsson, Craig L Franklin

To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful. By comparing CH and gastric gavage for fecal material transfer, we isolated the microbial component of this effect and determined that differences in disease severity and survival were associated with microbial factors rather than the transfer method itself. Mice receiving a low richness GM via CH and gastric gavage exhibited greater disease severity and higher expression of pro-inflammatory immune mediators compared to those receiving a high richness GM. This study provides valuable insights into the role of GM composition and colonization in disease modulation.

为了研究不同特异性无病原体肠道微生物组(GMs)对炎症性肠病小鼠模型的影响,选择的GMs通过胚胎移植(ET)、交叉培养(CF)和共育(CH)进行转移。先前的研究表明,转基因转移方法和供体和受体转基因的微生物组成可以影响葡聚糖硫酸钠诱导的结肠炎的微生物定植和疾病表型。当低丰度转基因通过CH转移到具有高丰度转基因的受体时,供体转基因未能成功定植,并且与成功定植的ET或CF相比,导致更严重的疾病表型。通过比较CH和胃灌胃对粪便物质转移的影响,我们分离了这种影响的微生物成分,并确定疾病严重程度和生存的差异与微生物因素有关,而不是转移方法本身。与接受高丰度转基因的小鼠相比,通过CH和胃灌胃接受低丰度转基因的小鼠表现出更大的疾病严重程度和更高的促炎免疫介质表达。该研究为转基因成分和定植在疾病调节中的作用提供了有价值的见解。
{"title":"Failure of colonization following gut microbiota transfer exacerbates DSS-induced colitis.","authors":"Kevin L Gustafson, Trevor R Rodriguez, Zachary L McAdams, Lyndon M Coghill, Aaron C Ericsson, Craig L Franklin","doi":"10.1080/19490976.2024.2447815","DOIUrl":"10.1080/19490976.2024.2447815","url":null,"abstract":"<p><p>To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful. By comparing CH and gastric gavage for fecal material transfer, we isolated the microbial component of this effect and determined that differences in disease severity and survival were associated with microbial factors rather than the transfer method itself. Mice receiving a low richness GM via CH and gastric gavage exhibited greater disease severity and higher expression of pro-inflammatory immune mediators compared to those receiving a high richness GM. This study provides valuable insights into the role of GM composition and colonization in disease modulation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447815"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inactivation of glutathione S-transferase alpha 4 blocks Enterococcus faecalis-induced bystander effect by promoting macrophage ferroptosis.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-16 DOI: 10.1080/19490976.2025.2451090
Yuanyuan Ju, Chunhua Ma, Lin Huang, Yumei Tao, Tianqi Li, Haibo Li, Mark M Huycke, Yonghong Yang, Xingmin Wang

Enterococcus faecalis-infected macrophages produce 4-hydroxynonenal (4-HNE) that mediates microbiota-induced bystander effect (MIBE) leading to colorectal cancer (CRC). Glutathione S-transferase alpha 4 (Gsta4), a specific detoxifying enzyme for 4-HNE, is overexpressed in human CRC and E. faecalis-induced murine CRC. However, the roles of Gsta4 in E. faecalis-induced colitis and CRC remain unclear. Herein, we demonstrate that Gsta4 is essential for MIBE by protecting macrophages from E. faecalis-induced ferroptosis. E. faecalis OG1RFSS was used to induce colitis in Gsta4-/- and Il10-/-/Gsta4-/- mice by orogastric gavage. Ferroptosis was assessed in Gsta4-deficient murine macrophages. We found that, unlike Il10-/- mice, Gsta4-/- and Il10-/-/Gsta4-/- mice colonized with E. faecalis failed to develop colitis or CRC. Immunofluorescent staining showed a reduction of macrophages in the lamina propria of E. faecalis-colonized Il10-/-/Gsta4-/- mice, as well as decreased Gpx4 expression, indicating the occurrence of ferroptosis. Ferroptosis was further confirmed in Gsta4-deficient murine macrophages infected with E. faecalis. Moreover, Gsta4 inactivation induced the upregulation of Hmox1 and phosphorylated c-Jun while blocked Nos2 expression, leading to the accumulation of intracellular ferrous iron, lipid peroxidation and, eventually, ferroptosis. Finally, Mapk8, as a ferroptosis driver, was remarkably elevated in E. faecalis-infected Gsta4-deficient macrophages. These results suggest that Gsta4 inactivation blocks MIBE by eliminating macrophages, thereby attenuates E. faecalis-induced colitis and CRC.

{"title":"Inactivation of glutathione <i>S</i>-transferase alpha 4 blocks <i>Enterococcus faecalis</i>-induced bystander effect by promoting macrophage ferroptosis.","authors":"Yuanyuan Ju, Chunhua Ma, Lin Huang, Yumei Tao, Tianqi Li, Haibo Li, Mark M Huycke, Yonghong Yang, Xingmin Wang","doi":"10.1080/19490976.2025.2451090","DOIUrl":"https://doi.org/10.1080/19490976.2025.2451090","url":null,"abstract":"<p><p><i>Enterococcus faecalis</i>-infected macrophages produce 4-hydroxynonenal (4-HNE) that mediates microbiota-induced bystander effect (MIBE) leading to colorectal cancer (CRC). Glutathione <i>S</i>-transferase alpha 4 (Gsta4), a specific detoxifying enzyme for 4-HNE, is overexpressed in human CRC and <i>E. faecalis</i>-induced murine CRC. However, the roles of Gsta4 in <i>E. faecalis</i>-induced colitis and CRC remain unclear. Herein, we demonstrate that Gsta4 is essential for MIBE by protecting macrophages from <i>E. faecalis</i>-induced ferroptosis. <i>E. faecalis</i> OG1RFSS was used to induce colitis in <i>Gsta4</i><sup>-/-</sup> and <i>Il10</i><sup>-/-</sup><i>/Gsta4<sup>-/-</sup></i> mice by orogastric gavage. Ferroptosis was assessed in Gsta4-deficient murine macrophages. We found that, unlike <i>Il10</i><sup>-/-</sup> mice, <i>Gsta4<sup>-/-</sup></i> and <i>Il10</i><sup>-/-</sup>/<i>Gsta4</i><sup>-/-</sup> mice colonized with <i>E. faecalis</i> failed to develop colitis or CRC. Immunofluorescent staining showed a reduction of macrophages in the lamina propria of <i>E. faecalis</i>-colonized <i>Il10</i><sup>-/-</sup>/<i>Gsta4</i><sup>-/-</sup> mice, as well as decreased Gpx4 expression, indicating the occurrence of ferroptosis. Ferroptosis was further confirmed in <i>Gsta4</i>-deficient murine macrophages infected with <i>E. faecalis</i>. Moreover, Gsta4 inactivation induced the upregulation of Hmox1 and phosphorylated c-Jun while blocked Nos2 expression, leading to the accumulation of intracellular ferrous iron, lipid peroxidation and, eventually, ferroptosis. Finally, Mapk8, as a ferroptosis driver, was remarkably elevated in <i>E. faecalis</i>-infected <i>Gsta4</i>-deficient macrophages. These results suggest that Gsta4 inactivation blocks MIBE by eliminating macrophages, thereby attenuates <i>E. faecalis</i>-induced colitis and CRC.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2451090"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusobacterium nucleatum upregulates the immune inhibitory receptor PD-L1 in colorectal cancer cells via the activation of ALPK1.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-29 DOI: 10.1080/19490976.2025.2458203
Coco Duizer, Moniek Salomons, Merel van Gogh, Sanne Gräve, Freke A Schaafsma, Maaike J Stok, Merel Sijbranda, Raghuvandhanan Kumarasamy Sivasamy, Rob J L Willems, Marcel R de Zoete

Fusobacterium nucleatum is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by F. nucleatum to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of F. nucleatum. However, the exact manner in which F. nucleatum promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored. Here, we show that both living F. nucleatum and sterile F. nucleatum-conditioned medium promote CXCL8 release from the intestinal adenocarcinoma HT-29 cell line. We determined that the observed pro-inflammatory effect was ALPK1-dependent in both HEK293 and HT-29 cells and that the released F. nucleatum molecule had characteristics that match those of the pro-inflammatory ALPK1 ligand ADP-heptose or related heptose phosphates. In addition, we determined that not only F. nucleatum promoted an ALPK1-dependent pro-inflammatory environment but also other Fusobacterium species such as F. varium, F. necrophorum and F. gonidiaformans generated similar effects, indicating that ADP-heptose or related heptose phosphate secretion is a conserved feature of the Fusobacterium genus. By performing transcriptional analysis of ADP-heptose stimulated HT-29 cells, we found several inflammatory and cancer-related pathways to be differentially regulated, including DNA mismatch repair genes and the immune inhibitory receptor PD-L1. Finally, we show that stimulation of HT-29 cells with F. nucleatum resulted in an ALPK1-dependent upregulation of PD-L1. These results aid in our understanding of the mechanisms by which F. nucleatum can affect tumor development and therapy and pave the way for future therapeutic approaches.

{"title":"<i>Fusobacterium nucleatum</i> upregulates the immune inhibitory receptor <i>PD-L1</i> in colorectal cancer cells via the activation of ALPK1.","authors":"Coco Duizer, Moniek Salomons, Merel van Gogh, Sanne Gräve, Freke A Schaafsma, Maaike J Stok, Merel Sijbranda, Raghuvandhanan Kumarasamy Sivasamy, Rob J L Willems, Marcel R de Zoete","doi":"10.1080/19490976.2025.2458203","DOIUrl":"10.1080/19490976.2025.2458203","url":null,"abstract":"<p><p><i>Fusobacterium nucleatum</i> is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by <i>F. nucleatum</i> to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of <i>F. nucleatum</i>. However, the exact manner in which <i>F. nucleatum</i> promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored. Here, we show that both living <i>F. nucleatum</i> and sterile <i>F. nucleatum-</i>conditioned medium promote CXCL8 release from the intestinal adenocarcinoma HT-29 cell line. We determined that the observed pro-inflammatory effect was ALPK1-dependent in both HEK293 and HT-29 cells and that the released <i>F. nucleatum</i> molecule had characteristics that match those of the pro-inflammatory ALPK1 ligand ADP-heptose or related heptose phosphates. In addition, we determined that not only <i>F. nucleatum</i> promoted an ALPK1-dependent pro-inflammatory environment but also other <i>Fusobacterium</i> species such as <i>F. varium</i>, <i>F. necrophorum</i> and <i>F. gonidiaformans</i> generated similar effects, indicating that ADP-heptose or related heptose phosphate secretion is a conserved feature of the <i>Fusobacterium</i> genus. By performing transcriptional analysis of ADP-heptose stimulated HT-29 cells, we found several inflammatory and cancer-related pathways to be differentially regulated, including DNA mismatch repair genes and the immune inhibitory receptor <i>PD-L1</i>. Finally, we show that stimulation of HT-29 cells with <i>F. nucleatum</i> resulted in an ALPK1-dependent upregulation of <i>PD-L1</i>. These results aid in our understanding of the mechanisms by which <i>F. nucleatum</i> can affect tumor development and therapy and pave the way for future therapeutic approaches.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2458203"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early life gut microbiome and its impact on childhood health and chronic conditions.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-07 DOI: 10.1080/19490976.2025.2463567
Harold Nunez, Pamela A Nieto, Ruben A Mars, Maryam Ghavami, Cheryl Sew Hoy, Kimberley Sukhum

The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.

{"title":"Early life gut microbiome and its impact on childhood health and chronic conditions.","authors":"Harold Nunez, Pamela A Nieto, Ruben A Mars, Maryam Ghavami, Cheryl Sew Hoy, Kimberley Sukhum","doi":"10.1080/19490976.2025.2463567","DOIUrl":"10.1080/19490976.2025.2463567","url":null,"abstract":"<p><p>The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2463567"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifidobacterium inhibits the progression of colorectal tumorigenesis in mice through fatty acid isomerization and gut microbiota modulation.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-09 DOI: 10.1080/19490976.2025.2464945
Yang Chen, Huiting Fang, Haiqin Chen, Xiaoming Liu, Jianxin Zhao, Catherine Stanton, R Paul Ross, Wei Chen, Bo Yang

Colorectal cancer (CRC) represents the third most common cancer worldwide. Consequently, there is an urgent need to identify novel preventive and therapeutic strategies for CRC. This study aimed to screen for beneficial bacteria that have a preventive effect on CRC and to elucidate the potential mechanisms. Initially, we compared gut bacteria and bacterial metabolites of healthy volunteers and CRC patients, which demonstrated that intestinal conjugated linoleic acid (CLA), butyric acid, and Bifidobacterium in CRC patients were significantly lower than those in healthy volunteers, and these indicators were significantly negatively correlated with CRC. Next, spontaneous CRC mouse model were conducted to explore the effect of supplemental CLA-producing Bifidobacterium on CRC. Supplementation of mice with CLA-producing Bifidobacterium breve CCFM683 and B. pseudocatenulatum MY40C significantly prevented CRC. Moreover, molecular approaches demonstrated that CLA and the CLA-producing gene, bbi, were the key metabolites and genes for CCFM683 to prevent CRC. Inhibitor intervention results showed that PPAR-γ was the key receptor for preventing CRC. CCFM683 inhibited the NF-κB signaling pathway, up-regulated MUC2, Claudin-1, and ZO-1, and promoted tumor cell apoptosis via the CLA-PPAR-γ axis. Additionally, fecal microbiota transplantation (FMT) and metagenomic analysis showed that CCFM683 up-regulated Odoribacter splanchnicus through CLA production, which then prevented CRC by producing butyric acid, up-regulating TJ proteins, regulating cytokines, and regulating gut microbiota. These results will contribute to the clinical trials of Bifidobacterium and the theoretical research and development of CRC dietary products.

{"title":"<i>Bifidobacterium</i> inhibits the progression of colorectal tumorigenesis in mice through fatty acid isomerization and gut microbiota modulation.","authors":"Yang Chen, Huiting Fang, Haiqin Chen, Xiaoming Liu, Jianxin Zhao, Catherine Stanton, R Paul Ross, Wei Chen, Bo Yang","doi":"10.1080/19490976.2025.2464945","DOIUrl":"10.1080/19490976.2025.2464945","url":null,"abstract":"<p><p>Colorectal cancer (CRC) represents the third most common cancer worldwide. Consequently, there is an urgent need to identify novel preventive and therapeutic strategies for CRC. This study aimed to screen for beneficial bacteria that have a preventive effect on CRC and to elucidate the potential mechanisms. Initially, we compared gut bacteria and bacterial metabolites of healthy volunteers and CRC patients, which demonstrated that intestinal conjugated linoleic acid (CLA), butyric acid, and <i>Bifidobacterium</i> in CRC patients were significantly lower than those in healthy volunteers, and these indicators were significantly negatively correlated with CRC. Next, spontaneous CRC mouse model were conducted to explore the effect of supplemental CLA-producing <i>Bifidobacterium</i> on CRC. Supplementation of mice with CLA-producing <i>Bifidobacterium breve</i> CCFM683 and <i>B. pseudocatenulatum</i> MY40C significantly prevented CRC. Moreover, molecular approaches demonstrated that CLA and the CLA-producing gene, <i>bbi</i>, were the key metabolites and genes for CCFM683 to prevent CRC. Inhibitor intervention results showed that PPAR-γ was the key receptor for preventing CRC. CCFM683 inhibited the NF-κB signaling pathway, up-regulated MUC2, Claudin-1, and ZO-1, and promoted tumor cell apoptosis via the CLA-PPAR-γ axis. Additionally, fecal microbiota transplantation (FMT) and metagenomic analysis showed that CCFM683 up-regulated <i>Odoribacter splanchnicus</i> through CLA production, which then prevented CRC by producing butyric acid, up-regulating TJ proteins, regulating cytokines, and regulating gut microbiota. These results will contribute to the clinical trials of <i>Bifidobacterium</i> and the theoretical research and development of CRC dietary products.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2464945"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotic supplementation mitigates sex-dependent nociceptive changes and gut dysbiosis induced by prenatal opioid exposure.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-14 DOI: 10.1080/19490976.2025.2464942
Salma Singh, Yaa Abu, Danielle Antoine, Daniel Gomez, Junyi Tao, Bridget Truitt, Sabita Roy

The gut microbiome has emerged as a promising target for modulating adverse effects of opioid exposure due to its significant role in health and disease. Opioid use disorder (OUD) has become increasingly prevalent, specifically in women of reproductive age, contributing to an increased incidence of offspring exposed to opioids in utero. Recent studies have shown that prenatal opioid exposure (POE) is associated with notable changes to the maternal gut microbiome, with subsequent implications for the offspring's microbiome and other adverse outcomes. However, the role of the gut microbiome in mediating sex-based differences in pain sensitivity has not yet been investigated. In this study, both male and female C57BL/6 offspring were used to determine sex-based differences in nociception and gut microbial composition as a result of POE. Our data reveals significant sex-based differences in offspring prenatally exposed to opioids. The gut microbiome of opioid-exposed females showed an enrichment of commensal bacteria including Lactobacillus compared to opioid-exposed males. Additionally, POE females demonstrated decreased nociceptive sensitivity, while males demonstrated increased nociceptive sensitivity. RNA sequencing of the prefrontal cortex showed sex-based differences in several canonical pathways, including an increase in the opioid signaling pathway of opioid-exposed females, which was not observed in males. Microbiome modification via maternal probiotic supplementation attenuated sex-based differences throughout the early stages of life. Together, our study provides further insight on sex-based differences arising from POE and highlights the pivotal role of the gut microbiome as a modifiable target for mitigating its negative effects.

{"title":"Probiotic supplementation mitigates sex-dependent nociceptive changes and gut dysbiosis induced by prenatal opioid exposure.","authors":"Salma Singh, Yaa Abu, Danielle Antoine, Daniel Gomez, Junyi Tao, Bridget Truitt, Sabita Roy","doi":"10.1080/19490976.2025.2464942","DOIUrl":"10.1080/19490976.2025.2464942","url":null,"abstract":"<p><p>The gut microbiome has emerged as a promising target for modulating adverse effects of opioid exposure due to its significant role in health and disease. Opioid use disorder (OUD) has become increasingly prevalent, specifically in women of reproductive age, contributing to an increased incidence of offspring exposed to opioids in utero. Recent studies have shown that prenatal opioid exposure (POE) is associated with notable changes to the maternal gut microbiome, with subsequent implications for the offspring's microbiome and other adverse outcomes. However, the role of the gut microbiome in mediating sex-based differences in pain sensitivity has not yet been investigated. In this study, both male and female C57BL/6 offspring were used to determine sex-based differences in nociception and gut microbial composition as a result of POE. Our data reveals significant sex-based differences in offspring prenatally exposed to opioids. The gut microbiome of opioid-exposed females showed an enrichment of commensal bacteria including <i>Lactobacillus</i> compared to opioid-exposed males. Additionally, POE females demonstrated decreased nociceptive sensitivity, while males demonstrated increased nociceptive sensitivity. RNA sequencing of the prefrontal cortex showed sex-based differences in several canonical pathways, including an increase in the opioid signaling pathway of opioid-exposed females, which was not observed in males. Microbiome modification via maternal probiotic supplementation attenuated sex-based differences throughout the early stages of life. Together, our study provides further insight on sex-based differences arising from POE and highlights the pivotal role of the gut microbiome as a modifiable target for mitigating its negative effects.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2464942"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salmonella utilizes L-arabinose to silence virulence gene expression for accelerated pathogen growth within the host.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-15 DOI: 10.1080/19490976.2025.2467187
Jingchen Yu, Huang Tang, Yana Chen, Zuoqiang Wang, Wanqiu Huang, Tao Zhou, Bingjie Wen, Chengyue Wang, Shuang Gu, Jinjing Ni, Jing Tao, Danni Wang, Jie Lu, Qing Xie, Yu-Feng Yao

Carbon source is an important nutrient for bacteria to sustain growth and often acts as a signal that modulates virulence expression. L-arabinose is produced by plants and plays an important role in regulating the global gene expression of bacteria. Previously, we have shown that L-arabinose induces a more severe systemic infection in Salmonella-infected mice with normal microbiota, but does not affect the disease progression in mice with microbiota depleted by antibiotic treatment. The underlying mechanism remains elusive. In this study, we demonstrate that L-arabinose represses the expression of Salmonella type III secretion system 1 (T3SS-1) genes by negatively regulating the activity of the cyclic 3' 5'-AMP (cAMP)-cAMP receptor protein (CRP) complex. The cAMP-CRP complex can activate ribosome-associated inhibitor A, encoded by yfiA, to maintain the stability of HilD, a key transcriptional regulator of T3SS-1. L-arabinose supplementation promotes Salmonella initial bloom in the antibiotic-pretreated mouse gut and ultimately compensates for reduced virulence within the host. These results decipher the molecular mechanism by which cAMP-CRP directs regulatory changes of virulence in response to L-arabinose in Salmonella. It further implies that Salmonella exploits L-arabinose both as a nutrient and a regulatory signal to maintain a balance between growth and virulence within the host.

{"title":"<i>Salmonella</i> utilizes L-arabinose to silence virulence gene expression for accelerated pathogen growth within the host.","authors":"Jingchen Yu, Huang Tang, Yana Chen, Zuoqiang Wang, Wanqiu Huang, Tao Zhou, Bingjie Wen, Chengyue Wang, Shuang Gu, Jinjing Ni, Jing Tao, Danni Wang, Jie Lu, Qing Xie, Yu-Feng Yao","doi":"10.1080/19490976.2025.2467187","DOIUrl":"10.1080/19490976.2025.2467187","url":null,"abstract":"<p><p>Carbon source is an important nutrient for bacteria to sustain growth and often acts as a signal that modulates virulence expression. L-arabinose is produced by plants and plays an important role in regulating the global gene expression of bacteria. Previously, we have shown that L-arabinose induces a more severe systemic infection in <i>Salmonella</i>-infected mice with normal microbiota, but does not affect the disease progression in mice with microbiota depleted by antibiotic treatment. The underlying mechanism remains elusive. In this study, we demonstrate that L-arabinose represses the expression of <i>Salmonella</i> type III secretion system 1 (T3SS-1) genes by negatively regulating the activity of the cyclic 3' 5'-AMP (cAMP)-cAMP receptor protein (CRP) complex. The cAMP-CRP complex can activate ribosome-associated inhibitor A, encoded by <i>yfiA</i>, to maintain the stability of HilD, a key transcriptional regulator of T3SS-1. L-arabinose supplementation promotes <i>Salmonella</i> initial bloom in the antibiotic-pretreated mouse gut and ultimately compensates for reduced virulence within the host. These results decipher the molecular mechanism by which cAMP-CRP directs regulatory changes of virulence in response to L-arabinose in <i>Salmonella</i>. It further implies that <i>Salmonella</i> exploits L-arabinose both as a nutrient and a regulatory signal to maintain a balance between growth and virulence within the host.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2467187"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th17 cell apoptosis in inflammatory bowel disease.
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-16 DOI: 10.1080/19490976.2025.2467235
Han Gao, Mingming Sun, Ai Li, Qiaoyan Gu, Dengfeng Kang, Zhongsheng Feng, Xiaoyu Li, Xuehong Wang, Liang Chen, Hong Yang, Yingzi Cong, Zhanju Liu

The gut microbiota-derived metabolite indole-3-propionic acid (IPA) plays an important role in maintaining intestinal mucosal homeostasis, while the molecular mechanisms underlying IPA regulation on mucosal CD4+ T cell functions in inflammatory bowel disease (IBD) remain elusive. Here we investigated the roles of IPA in modulating mucosal CD4+ T cells and its therapeutic potential in treatment of human IBD. Leveraging metabolomics and microbial community analyses, we observed that the levels of IPA-producing microbiota (e.g. Peptostreptococcus, Clostridium, and Fournierella) and IPA were decreased, while the IPA-consuming microbiota (e.g. Parabacteroides, Erysipelatoclostridium, and Lachnoclostridium) were increased in the feces of IBD patients than those in healthy donors. Dextran sulfate sodium (DSS)-induced acute colitis and CD45RBhighCD4+ T cell transfer-induced chronic colitis models were then established in mice and treated orally with IPA to study its role in intestinal mucosal inflammation in vivo. We found that oral administration of IPA attenuated mucosal inflammation in both acute and chronic colitis models in mice, as characterized by increased body weight, and reduced levels of pro-inflammatory cytokines (e.g. TNF-α, IFN-γ, and IL-17A) and histological scores in the colon. We further utilized RNA sequencing, molecular docking simulations, and surface plasmon resonance analyses and identified that IPA exerts its biological effects by interacting with heat shock protein 70 (HSP70), leading to inducing Th1/Th17 cell apoptosis. Consistently, ectopic expression of HSP70 in CD4+ T cells conferred resistance to IPA-induced Th1/Th17 cell apoptosis. Therefore, these findings identify a previously unrecognized pathway by which IPA modulates intestinal inflammation and provide a promising avenue for the treatment of IBD.

{"title":"Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th17 cell apoptosis in inflammatory bowel disease.","authors":"Han Gao, Mingming Sun, Ai Li, Qiaoyan Gu, Dengfeng Kang, Zhongsheng Feng, Xiaoyu Li, Xuehong Wang, Liang Chen, Hong Yang, Yingzi Cong, Zhanju Liu","doi":"10.1080/19490976.2025.2467235","DOIUrl":"10.1080/19490976.2025.2467235","url":null,"abstract":"<p><p>The gut microbiota-derived metabolite indole-3-propionic acid (IPA) plays an important role in maintaining intestinal mucosal homeostasis, while the molecular mechanisms underlying IPA regulation on mucosal CD4<sup>+</sup> T cell functions in inflammatory bowel disease (IBD) remain elusive. Here we investigated the roles of IPA in modulating mucosal CD4<sup>+</sup> T cells and its therapeutic potential in treatment of human IBD. Leveraging metabolomics and microbial community analyses, we observed that the levels of IPA-producing microbiota (e.g. <i>Peptostreptococcus</i>, <i>Clostridium</i>, and <i>Fournierella</i>) and IPA were decreased, while the IPA-consuming microbiota (e.g. <i>Parabacteroides</i>, <i>Erysipelatoclostridium</i>, and <i>Lachnoclostridium</i>) were increased in the feces of IBD patients than those in healthy donors. Dextran sulfate sodium (DSS)-induced acute colitis and CD45RB<sup>high</sup>CD4<sup>+</sup> T cell transfer-induced chronic colitis models were then established in mice and treated orally with IPA to study its role in intestinal mucosal inflammation <i>in vivo</i>. We found that oral administration of IPA attenuated mucosal inflammation in both acute and chronic colitis models in mice, as characterized by increased body weight, and reduced levels of pro-inflammatory cytokines (e.g. TNF-α, IFN-γ, and IL-17A) and histological scores in the colon. We further utilized RNA sequencing, molecular docking simulations, and surface plasmon resonance analyses and identified that IPA exerts its biological effects by interacting with heat shock protein 70 (HSP70), leading to inducing Th1/Th17 cell apoptosis. Consistently, ectopic expression of HSP70 in CD4<sup>+</sup> T cells conferred resistance to IPA-induced Th1/Th17 cell apoptosis. Therefore, these findings identify a previously unrecognized pathway by which IPA modulates intestinal inflammation and provide a promising avenue for the treatment of IBD.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2467235"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematically-designed mixtures outperform single fibers for gut microbiota support. 系统设计的混合物在支持肠道微生物群方面优于单一纤维。
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-20 DOI: 10.1080/19490976.2024.2442521
T M Cantu-Jungles, V Agamennone, T J Van den Broek, F H J Schuren, B Hamaker

Dietary fiber interventions to modulate the gut microbiota have largely relied on isolated fibers or specific fiber sources. We hypothesized that fibers systematically blended could promote more health-related bacterial groups. Initially, pooled in vitro fecal fermentations were used to design dietary fiber mixtures to support complementary microbial groups related to health. Then, microbial responses were compared for the designed mixtures versus their single fiber components in vitro using fecal samples from a separate cohort of 10 healthy adults. The designed fiber mixtures outperformed individual fibers in supporting bacterial taxa across donors resulting in superior alpha diversity and unexpected higher SCFA production. Moreover, unique shifts in community structure and specific taxa were observed for fiber mixtures that were not observed for single fibers, suggesting a synergistic effect when certain fibers are put together. Fiber mixture responses were remarkably more consistent than individual fibers across donors in promoting several taxa, especially butyrate producers from the Clostridium cluster XIVa. This is the first demonstration of synergistic fiber interactions for superior support of a diverse group of important beneficial microbes consistent across people, and unexpectedly high SCFA production. Overall, harnessing the synergistic potential of designed fiber mixtures represents a promising and more efficacious avenue for future prebiotic development.

调节肠道微生物群的膳食纤维干预措施主要依赖于孤立的纤维或特定的纤维来源。我们假设,系统地混合纤维可以促进更多与健康相关的细菌群。最初,我们利用体外粪便发酵来设计膳食纤维混合物,以支持与健康相关的互补微生物群。然后,利用 10 名健康成年人的粪便样本,比较了设计的混合物与单一纤维成分在体外的微生物反应。设计的纤维混合物在支持各供体细菌分类群方面的表现优于单个纤维,从而产生了卓越的α多样性和意想不到的更高SCFA产量。此外,在纤维混合物中观察到了群落结构和特定分类群的独特变化,而在单一纤维中没有观察到这种变化,这表明当某些纤维组合在一起时会产生协同效应。在促进多个分类群,特别是梭状芽孢杆菌 XIVa 群的丁酸盐生产者方面,不同供体的纤维混合物反应比单个纤维反应更加一致。这是首次展示纤维之间的协同作用,可为不同人群的多种重要有益微生物提供卓越支持,并产生意想不到的高 SCFA。总之,利用设计纤维混合物的协同潜力是未来益生元开发的一条前景广阔、更有效的途径。
{"title":"Systematically-designed mixtures outperform single fibers for gut microbiota support.","authors":"T M Cantu-Jungles, V Agamennone, T J Van den Broek, F H J Schuren, B Hamaker","doi":"10.1080/19490976.2024.2442521","DOIUrl":"https://doi.org/10.1080/19490976.2024.2442521","url":null,"abstract":"<p><p>Dietary fiber interventions to modulate the gut microbiota have largely relied on isolated fibers or specific fiber sources. We hypothesized that fibers systematically blended could promote more health-related bacterial groups. Initially, pooled <i>in vitro</i> fecal fermentations were used to design dietary fiber mixtures to support complementary microbial groups related to health. Then, microbial responses were compared for the designed mixtures versus their single fiber components <i>in vitro</i> using fecal samples from a separate cohort of 10 healthy adults. The designed fiber mixtures outperformed individual fibers in supporting bacterial taxa across donors resulting in superior alpha diversity and unexpected higher SCFA production. Moreover, unique shifts in community structure and specific taxa were observed for fiber mixtures that were not observed for single fibers, suggesting a synergistic effect when certain fibers are put together. Fiber mixture responses were remarkably more consistent than individual fibers across donors in promoting several taxa, especially butyrate producers from the <i>Clostridium</i> cluster XIVa. This is the first demonstration of synergistic fiber interactions for superior support of a diverse group of important beneficial microbes consistent across people, and unexpectedly high SCFA production. Overall, harnessing the synergistic potential of designed fiber mixtures represents a promising and more efficacious avenue for future prebiotic development.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442521"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions. 建立基于caco -2的肠粘膜模型,研究肠屏障特性和细菌-粘液相互作用。
IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI: 10.1080/19490976.2024.2434685
Evelien Floor, Jinyi Su, Maitrayee Chatterjee, Elise S Kuipers, Noortje IJssennagger, Faranak Heidari, Laura Giordano, Richard W Wubbolts, Silvia M Mihăilă, Daphne A C Stapels, Yvonne Vercoulen, Karin Strijbis

The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for in vitro assays, particularly the generation of a mucus layer, has proven to be challenging. The intestinal cell-line Caco-2 is widely used in academic and industrial laboratories due to its capacity to polarize, form an apical brush border, and reproducibly grow into confluent cell layers in different culture systems. However, under normal culture conditions, Caco-2 cultures lack a mucus layer. Here, we demonstrate for the first time that Caco-2 cultures can form a robust mucus layer when cultured under air-liquid interface (ALI) conditions on Transwell inserts with addition of vasointestinal peptide (VIP) in the basolateral compartment. We demonstrate that unique gene clusters are regulated in response to ALI and VIP single stimuli, but the ALI-VIP combination treatment resulted in a significant upregulation of multiple mucin genes and proteins, including secreted MUC2 and transmembrane mucins MUC13 and MUC17. Expression of tight junction proteins was significantly altered in the ALI-VIP condition, leading to increased permeability to small molecules. Commensal Lactiplantibacillus plantarum bacteria closely associated with the Caco-2 mucus layer and differentially colonized the surface of the ALI cultures. Pathogenic Salmonella enterica were capable of invading beyond the mucus layer and brush border. In conclusion, Caco-2 ALI-VIP cultures provide an accessible and straightforward way to culture an in vitro intestinal mucosal model with improved biomimetic features. This novel in vitro intestinal model can facilitate studies into mucus and epithelial barrier functions and in-depth molecular characterization of pathogenic and commensal microbe-mucus interactions.

肠粘膜屏障是一个动态系统,允许营养摄取,刺激健康的微生物-宿主相互作用,并防止病原体的入侵。粘膜由细胞连接连接的上皮细胞组成,这些细胞连接调节黏液层覆盖的营养物质的通过,黏液层在宿主-微生物组相互作用中起重要作用。在体外实验中模拟肠粘膜,特别是黏液层的产生,已被证明是具有挑战性的。肠道细胞系Caco-2在不同的培养体系中具有极化、形成顶端刷状边界、可重复生长成融合细胞层的能力,被广泛应用于学术和工业实验室。然而,在正常培养条件下,Caco-2培养物缺乏黏液层。在这里,我们首次证明Caco-2培养物在气液界面(ALI)条件下在Transwell插入物上在基底外侧隔室中添加血管肠肽(VIP)时可以形成坚固的黏液层。我们发现,在ALI和VIP的单一刺激下,独特的基因簇受到调控,但ALI-VIP联合治疗导致多种粘蛋白基因和蛋白的显著上调,包括分泌的MUC2和跨膜粘蛋白MUC13和MUC17。在ALI-VIP条件下,紧密连接蛋白的表达显著改变,导致对小分子的通透性增加。共生植物乳杆菌与Caco-2黏液层密切相关,并在ALI培养物表面有差异定植。致病性肠炎沙门氏菌能够越过黏液层和毛刷边界侵入。综上所述,Caco-2 ALI-VIP培养物为体外培养具有较好仿生特性的肠粘膜模型提供了一种简便易行的方法。这种新型的体外肠道模型有助于研究黏液和上皮屏障功能,以及病原和共生微生物-黏液相互作用的深入分子表征。
{"title":"Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions.","authors":"Evelien Floor, Jinyi Su, Maitrayee Chatterjee, Elise S Kuipers, Noortje IJssennagger, Faranak Heidari, Laura Giordano, Richard W Wubbolts, Silvia M Mihăilă, Daphne A C Stapels, Yvonne Vercoulen, Karin Strijbis","doi":"10.1080/19490976.2024.2434685","DOIUrl":"https://doi.org/10.1080/19490976.2024.2434685","url":null,"abstract":"<p><p>The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for <i>in vitro</i> assays, particularly the generation of a mucus layer, has proven to be challenging. The intestinal cell-line Caco-2 is widely used in academic and industrial laboratories due to its capacity to polarize, form an apical brush border, and reproducibly grow into confluent cell layers in different culture systems. However, under normal culture conditions, Caco-2 cultures lack a mucus layer. Here, we demonstrate for the first time that Caco-2 cultures can form a robust mucus layer when cultured under air-liquid interface (ALI) conditions on Transwell inserts with addition of vasointestinal peptide (VIP) in the basolateral compartment. We demonstrate that unique gene clusters are regulated in response to ALI and VIP single stimuli, but the ALI-VIP combination treatment resulted in a significant upregulation of multiple mucin genes and proteins, including secreted MUC2 and transmembrane mucins MUC13 and MUC17. Expression of tight junction proteins was significantly altered in the ALI-VIP condition, leading to increased permeability to small molecules. Commensal <i>Lactiplantibacillus plantarum</i> bacteria closely associated with the Caco-2 mucus layer and differentially colonized the surface of the ALI cultures. Pathogenic <i>Salmonella enterica</i> were capable of invading beyond the mucus layer and brush border. In conclusion, Caco-2 ALI-VIP cultures provide an accessible and straightforward way to culture an <i>in vitro</i> intestinal mucosal model with improved biomimetic features. This novel <i>in vitro</i> intestinal model can facilitate studies into mucus and epithelial barrier functions and in-depth molecular characterization of pathogenic and commensal microbe-mucus interactions.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2434685"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gut Microbes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1