Efficient reinterpretation of rare disease cases using Exomiser.

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY NPJ Genomic Medicine Pub Date : 2024-12-18 DOI:10.1038/s41525-024-00456-2
Letizia Vestito, Julius O B Jacobsen, Susan Walker, Valentina Cipriani, Nomi L Harris, Melissa A Haendel, Christopher J Mungall, Peter Robinson, Damian Smedley
{"title":"Efficient reinterpretation of rare disease cases using Exomiser.","authors":"Letizia Vestito, Julius O B Jacobsen, Susan Walker, Valentina Cipriani, Nomi L Harris, Melissa A Haendel, Christopher J Mungall, Peter Robinson, Damian Smedley","doi":"10.1038/s41525-024-00456-2","DOIUrl":null,"url":null,"abstract":"<p><p>Whole genome sequencing has transformed rare disease research; however, 50-80% of rare disease patients remain undiagnosed after such testing. Regular reanalysis can identify new diagnoses, especially in newly discovered disease-gene associations, but efficient tools are required to support clinical interpretation. Exomiser, a phenotype-driven variant prioritisation tool, fulfils this role; within the 100,000 Genomes Project (100kGP), diagnoses were identified after reanalysis in 463 (2%) of 24,015 unsolved patients after previous analysis for variants in known disease genes. However, extensive manual interpretation was required. This led us to develop a reanalysis strategy to efficiently reveal candidates from recent disease gene discoveries or newly designated pathogenic/likely pathogenic variants. Optimal settings to highlight new candidates from Exomiser reanalysis were identified with high recall (82%) and precision (88%) when including Exomiser's automated ACMG/AMP classifier, which correctly converted 92% of variants from unknown significance to pathogenic/likely pathogenic. In conclusion, Exomiser efficiently reinterprets previously unsolved cases.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"65"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00456-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Whole genome sequencing has transformed rare disease research; however, 50-80% of rare disease patients remain undiagnosed after such testing. Regular reanalysis can identify new diagnoses, especially in newly discovered disease-gene associations, but efficient tools are required to support clinical interpretation. Exomiser, a phenotype-driven variant prioritisation tool, fulfils this role; within the 100,000 Genomes Project (100kGP), diagnoses were identified after reanalysis in 463 (2%) of 24,015 unsolved patients after previous analysis for variants in known disease genes. However, extensive manual interpretation was required. This led us to develop a reanalysis strategy to efficiently reveal candidates from recent disease gene discoveries or newly designated pathogenic/likely pathogenic variants. Optimal settings to highlight new candidates from Exomiser reanalysis were identified with high recall (82%) and precision (88%) when including Exomiser's automated ACMG/AMP classifier, which correctly converted 92% of variants from unknown significance to pathogenic/likely pathogenic. In conclusion, Exomiser efficiently reinterprets previously unsolved cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
期刊最新文献
Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient. Germline structural variant as the cause of Lynch Syndrome in a family from Ecuador. Pre-T cell receptor-α immunodeficiency detected exclusively using whole genome sequencing. Assessment of candidate high-grade serous ovarian carcinoma predisposition genes through integrated germline and tumour sequencing. Author Correction: The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1