Akira Hasuike, Quinn T. Easter, Daniel Clark, Kevin M. Byrd
{"title":"Application of Single-Cell Genomics to Animal Models of Periodontitis and Peri-Implantitis","authors":"Akira Hasuike, Quinn T. Easter, Daniel Clark, Kevin M. Byrd","doi":"10.1111/jcpe.14093","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>This narrative review aims to synthesize current knowledge on integrating single-cell genomics technologies with animal models of periodontitis and peri-implantitis.</p>\n </section>\n \n <section>\n \n <h3> Review</h3>\n \n <p>Single-cell RNA sequencing (scRNAseq) reveals cellular heterogeneity and specific cell roles in periodontitis and peri-implantitis, overcoming the limitations of bulk RNA sequencing. Under controlled conditions and genetic manipulation, animal models facilitate studying disease progression, gene functions and systemic disease links, aiding targeted therapy development. Knockout models have started to elucidate the impact of genetic mutations on periodontal disease and host responses. scRNAseq in animal models has been used to examine connections between periodontitis and systemic diseases, revealing altered immune environments and cellular interactions. Emerging studies are now applying these methods to animal models of peri-implantitis. Integrating these datasets into single-cell and spatially resolved atlases will enable future meta-analyses, providing deeper insights into disease mechanisms considering factors such as sex, strain, and age.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Integrating scRNAseq with animal models advances the understanding of periodontitis and peri-implantitis pathogenesis and precision therapies. The combined use of single-cell and spatial genomics and scRNAseq will further enhance data insights significantly for drug discovery and preclinical testing, making these technologies pivotal in validating animal models and translating findings into clinical practice.</p>\n </section>\n </div>","PeriodicalId":15380,"journal":{"name":"Journal of Clinical Periodontology","volume":"52 2","pages":"268-279"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Periodontology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcpe.14093","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
This narrative review aims to synthesize current knowledge on integrating single-cell genomics technologies with animal models of periodontitis and peri-implantitis.
Review
Single-cell RNA sequencing (scRNAseq) reveals cellular heterogeneity and specific cell roles in periodontitis and peri-implantitis, overcoming the limitations of bulk RNA sequencing. Under controlled conditions and genetic manipulation, animal models facilitate studying disease progression, gene functions and systemic disease links, aiding targeted therapy development. Knockout models have started to elucidate the impact of genetic mutations on periodontal disease and host responses. scRNAseq in animal models has been used to examine connections between periodontitis and systemic diseases, revealing altered immune environments and cellular interactions. Emerging studies are now applying these methods to animal models of peri-implantitis. Integrating these datasets into single-cell and spatially resolved atlases will enable future meta-analyses, providing deeper insights into disease mechanisms considering factors such as sex, strain, and age.
Conclusions
Integrating scRNAseq with animal models advances the understanding of periodontitis and peri-implantitis pathogenesis and precision therapies. The combined use of single-cell and spatial genomics and scRNAseq will further enhance data insights significantly for drug discovery and preclinical testing, making these technologies pivotal in validating animal models and translating findings into clinical practice.
期刊介绍:
Journal of Clinical Periodontology was founded by the British, Dutch, French, German, Scandinavian, and Swiss Societies of Periodontology.
The aim of the Journal of Clinical Periodontology is to provide the platform for exchange of scientific and clinical progress in the field of Periodontology and allied disciplines, and to do so at the highest possible level. The Journal also aims to facilitate the application of new scientific knowledge to the daily practice of the concerned disciplines and addresses both practicing clinicians and academics. The Journal is the official publication of the European Federation of Periodontology but wishes to retain its international scope.
The Journal publishes original contributions of high scientific merit in the fields of periodontology and implant dentistry. Its scope encompasses the physiology and pathology of the periodontium, the tissue integration of dental implants, the biology and the modulation of periodontal and alveolar bone healing and regeneration, diagnosis, epidemiology, prevention and therapy of periodontal disease, the clinical aspects of tooth replacement with dental implants, and the comprehensive rehabilitation of the periodontal patient. Review articles by experts on new developments in basic and applied periodontal science and associated dental disciplines, advances in periodontal or implant techniques and procedures, and case reports which illustrate important new information are also welcome.